The Quantum Internet: an Efficient Stabilizer states Distribution Scheme
- URL: http://arxiv.org/abs/2305.02656v1
- Date: Thu, 4 May 2023 08:53:38 GMT
- Title: The Quantum Internet: an Efficient Stabilizer states Distribution Scheme
- Authors: Seid Koudia
- Abstract summary: Quantum networks constitute a major part of quantum technologies.
They will boost quantum computing drastically by providing a scalable modular architecture of quantum chips.
They will provide the backbone of the future quantum internet, allowing for high margins of security.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum networks constitute a major part of quantum technologies. They will
boost distributed quantum computing drastically by providing a scalable modular
architecture of quantum chips, or by establishing an infrastructure for
measurement based quantum computing. Moreover, they will provide the backbone
of the future quantum internet, allowing for high margins of security.
Interestingly, the advantages that the quantum networks would provide for
communications, rely on entanglement distribution, which suffers from high
latency in protocols based on Bell pair distribution and bipartite entanglement
swapping. Moreover, the designed algorithms for multipartite entanglement
routing suffer from intractability issues making them unsolvable exactly in
polynomial time. In this paper, we investigate a new approach for graph states
distribution in quantum networks relying inherently on local quantum coding --
LQC -- isometries and on multipartite states transfer. Additionally,
single-shot bounds for stabilizer states distribution are provided. Analogously
to network coding, these bounds are shown to be achievable if appropriate
isometries/stabilizer codes in relay nodes are chosen, which induces a lower
latency entanglement distribution. As a matter of fact, the advantages of the
protocol for different figures of merit of the network are provided.
Related papers
- Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Secure and Efficient Entanglement Distribution Protocol for Near-Term
Quantum Internet [1.7562083088615124]
This paper introduces a protocol to distribute entanglements among quantum devices within classical-quantum networks with limited quantum links.
The proposed protocol uses entanglement swapping to distribute entanglements efficiently in a butterfly network.
We also propose a protocol for securing entanglement distribution against malicious entanglements using quantum state encoding through rotation.
arXiv Detail & Related papers (2023-12-10T05:38:40Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Resource Allocation in Quantum Networks for Distributed Quantum
Computing [0.0]
Current trend suggests that quantum computing will become available at scale for commercial purposes in the near future.
Quantum Internet requires the interconnection of quantum computers by quantum links and repeaters to exchange entangled quantum bits.
This paper investigates the requirements and objectives of smart computing on distributed nodes from the perspective of quantum network provisioning.
arXiv Detail & Related papers (2022-03-11T10:46:31Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Verification of Distributed Quantum Programs [6.266176871677275]
We propose a CSP-like distributed programming language to facilitate the specification and verification of distributed quantum systems.
The effectiveness of the logic is demonstrated by its applications in the verification of quantum teleportation and local implementation of non-local CNOT gates.
arXiv Detail & Related papers (2021-04-30T07:23:55Z) - Distributed Quantum Computing and Network Control for Accelerated VQE [0.0]
We consider an approach for distributing the accelerated variational quantum eigensolver (AVQE) algorithm over arbitrary sized - in terms of number of qubits - distributed quantum computers.
We propose an architecture for a distributed quantum control system in the settings of centralized and decentralized network control.
arXiv Detail & Related papers (2021-01-07T11:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.