Optimized Distribution of Entanglement Graph States in Quantum Networks
- URL: http://arxiv.org/abs/2405.00222v1
- Date: Tue, 30 Apr 2024 22:00:25 GMT
- Title: Optimized Distribution of Entanglement Graph States in Quantum Networks
- Authors: Xiaojie Fan, Caitao Zhan, Himanshu Gupta, C. R. Ramakrishnan,
- Abstract summary: In quantum networks, multipartite entangled states distributed over the network help implement and support many quantum network applications.
Our work focuses on developing optimal techniques to generate and distribute multipartite entanglement states efficiently.
- Score: 2.934854825488435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building large-scale quantum computers, essential to demonstrating quantum advantage, is a key challenge. Quantum Networks (QNs) can help address this challenge by enabling the construction of large, robust, and more capable quantum computing platforms by connecting smaller quantum computers. Moreover, unlike classical systems, QNs can enable fully secured long-distance communication. Thus, quantum networks lie at the heart of the success of future quantum information technologies. In quantum networks, multipartite entangled states distributed over the network help implement and support many quantum network applications for communications, sensing, and computing. Our work focuses on developing optimal techniques to generate and distribute multipartite entanglement states efficiently. Prior works on generating general multipartite entanglement states have focused on the objective of minimizing the number of maximally entangled pairs (EPs) while ignoring the heterogeneity of the network nodes and links as well as the stochastic nature of underlying processes. In this work, we develop a hypergraph based linear programming framework that delivers optimal (under certain assumptions) generation schemes for general multipartite entanglement represented by graph states, under the network resources, decoherence, and fidelity constraints, while considering the stochasticity of the underlying processes. We illustrate our technique by developing generation schemes for the special cases of path and tree graph states, and discuss optimized generation schemes for more general classes of graph states. Using extensive simulations over a quantum network simulator (NetSquid), we demonstrate the effectiveness of our developed techniques and show that they outperform prior known schemes by up to orders of magnitude.
Related papers
- Quantum Positional Encodings for Graph Neural Networks [1.9791587637442671]
We propose novel families of positional encodings tailored to graph neural networks obtained with quantum computers.
Our inspiration stems from the recent advancements in quantum processing units, which offer computational capabilities beyond the reach of classical hardware.
arXiv Detail & Related papers (2024-05-21T17:56:33Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum networks with neutral atom processing nodes [0.42970700836450487]
Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science.
Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks.
We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes.
arXiv Detail & Related papers (2023-04-04T19:34:13Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.