Continual Learning in Open-vocabulary Classification with Complementary Memory Systems
- URL: http://arxiv.org/abs/2307.01430v3
- Date: Sat, 05 Oct 2024 05:29:05 GMT
- Title: Continual Learning in Open-vocabulary Classification with Complementary Memory Systems
- Authors: Zhen Zhu, Weijie Lyu, Yao Xiao, Derek Hoiem,
- Abstract summary: We introduce a method for flexible and efficient continual learning in open-vocabulary image classification.
We combine predictions from a CLIP zero-shot model and the exemplar-based model, using the zero-shot estimated probability that a sample's class is within the exemplar classes.
We also propose a "tree probe" method, an adaption of lazy learning principles, which enables fast learning from new examples with competitive accuracy to batch-trained linear models.
- Score: 19.337633598158778
- License:
- Abstract: We introduce a method for flexible and efficient continual learning in open-vocabulary image classification, drawing inspiration from the complementary learning systems observed in human cognition. Specifically, we propose to combine predictions from a CLIP zero-shot model and the exemplar-based model, using the zero-shot estimated probability that a sample's class is within the exemplar classes. We also propose a "tree probe" method, an adaption of lazy learning principles, which enables fast learning from new examples with competitive accuracy to batch-trained linear models. We test in data incremental, class incremental, and task incremental settings, as well as ability to perform flexible inference on varying subsets of zero-shot and learned categories. Our proposed method achieves a good balance of learning speed, target task effectiveness, and zero-shot effectiveness. Code will be available at https://github.com/jessemelpolio/TreeProbe.
Related papers
- Anytime Continual Learning for Open Vocabulary Classification [15.228942895385432]
AnytimeCL problem aims to break away from batch training and rigid models.
We propose a dynamic weighting between predictions of a partially fine-tuned model and a fixed open vocabulary model.
Our methods are validated with experiments that test flexibility of learning and inference.
arXiv Detail & Related papers (2024-09-13T03:34:37Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Class incremental learning with probability dampening and cascaded gated classifier [4.285597067389559]
We propose a novel incremental regularisation approach called Margin Dampening and Cascaded Scaling.
The first combines a soft constraint and a knowledge distillation approach to preserve past knowledge while allowing forgetting new patterns.
We empirically show that our approach performs well on multiple benchmarks well-established baselines.
arXiv Detail & Related papers (2024-02-02T09:33:07Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - Class-Incremental Learning with Generative Classifiers [6.570917734205559]
We propose a new strategy for class-incremental learning: generative classification.
Our proposal is to learn the joint distribution p(x,y), factorized as p(x|y)p(y), and to perform classification using Bayes' rule.
As a proof-of-principle, here we implement this strategy by training a variational autoencoder for each class to be learned.
arXiv Detail & Related papers (2021-04-20T16:26:14Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.