Unsupervised Quality Prediction for Improved Single-Frame and Weighted
Sequential Visual Place Recognition
- URL: http://arxiv.org/abs/2307.01464v1
- Date: Tue, 4 Jul 2023 03:53:05 GMT
- Title: Unsupervised Quality Prediction for Improved Single-Frame and Weighted
Sequential Visual Place Recognition
- Authors: Helen Carson, Jason J. Ford, Michael Milford
- Abstract summary: We present a new, training-free approach to predicting the likely quality of localization estimates.
We use these predictions to bias a sequence-matching process to produce additional performance gains.
Our system is lightweight, runs in real-time and is agnostic to the underlying VPR technique.
- Score: 20.737660223671003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While substantial progress has been made in the absolute performance of
localization and Visual Place Recognition (VPR) techniques, it is becoming
increasingly clear from translating these systems into applications that other
capabilities like integrity and predictability are just as important,
especially for safety- or operationally-critical autonomous systems. In this
research we present a new, training-free approach to predicting the likely
quality of localization estimates, and a novel method for using these
predictions to bias a sequence-matching process to produce additional
performance gains beyond that of a naive sequence matching approach. Our
combined system is lightweight, runs in real-time and is agnostic to the
underlying VPR technique. On extensive experiments across four datasets and
three VPR techniques, we demonstrate our system improves precision performance,
especially at the high-precision/low-recall operating point. We also present
ablation and analysis identifying the performance contributions of the
prediction and weighted sequence matching components in isolation, and the
relationship between the quality of the prediction system and the benefits of
the weighted sequential matcher.
Related papers
- Causal Interventional Prediction System for Robust and Explainable Effect Forecasting [14.104665282086339]
We explore the robustness and explainability of AI-based forecasting systems.
We design a causal interventional prediction system (CIPS) based on a variational autoencoder and fully conditional specification of multiple imputations.
arXiv Detail & Related papers (2024-07-29T04:16:45Z) - Learning Global and Local Features of Power Load Series Through Transformer and 2D-CNN: An Image-based Multi-step Forecasting Approach Incorporating Phase Space Reconstruction [1.9458156037869137]
This study proposes a novel multi-step forecasting approach by delicately integrating the PSR with neural networks to establish an end-to-end learning system.
A novel deep learning model, namely PSR-GALIEN, is designed, in which the Transformer and 2D-CNN are employed for the extraction of the global and local patterns in the image.
The results show that, compared with six state-of-the-art deep learning models, the forecasting performance of PSR-GALIEN consistently surpasses these baselines.
arXiv Detail & Related papers (2024-07-16T09:59:13Z) - The Significance of Latent Data Divergence in Predicting System Degradation [1.2058600649065616]
Condition-Based Maintenance is pivotal in enabling the early detection of potential failures in engineering systems.
We introduce a novel methodology grounded in the analysis of statistical similarity within latent data from system components.
We infer the similarity between systems by evaluating the divergence of these priors, offering a nuanced understanding of individual system behaviors.
arXiv Detail & Related papers (2024-06-13T11:41:20Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
The work introduces the Penalized Inverse Probability (PIP) nonconformity score, and its regularized version RePIP, that allow the joint optimization of both efficiency and informativeness.
The work shows how PIP-based conformal classifiers exhibit precisely the desired behavior in comparison with other nonconformity measures and strike a good balance between informativeness and efficiency.
arXiv Detail & Related papers (2024-06-13T07:37:16Z) - ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning [5.648318448953635]
ARBEx is a novel attentive feature extraction framework driven by Vision Transformer.
We employ learnable anchor points in the embedding space with label distributions and multi-head self-attention mechanism to optimize performance against weak predictions.
Our strategy outperforms current state-of-the-art methodologies, according to extensive experiments conducted in a variety of contexts.
arXiv Detail & Related papers (2023-05-02T15:10:01Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Towards More Fine-grained and Reliable NLP Performance Prediction [85.78131503006193]
We make two contributions to improving performance prediction for NLP tasks.
First, we examine performance predictors for holistic measures of accuracy like F1 or BLEU.
Second, we propose methods to understand the reliability of a performance prediction model from two angles: confidence intervals and calibration.
arXiv Detail & Related papers (2021-02-10T15:23:20Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.