Security of entanglement-based QKD with realistic parametric
down-conversion sources
- URL: http://arxiv.org/abs/2307.01834v1
- Date: Tue, 4 Jul 2023 17:25:26 GMT
- Title: Security of entanglement-based QKD with realistic parametric
down-conversion sources
- Authors: K. S. Kravtsov
- Abstract summary: The paper analyzes security aspects of practical entanglement-based quantum key distribution (QKD)
We show that this effect does not impair the security of entanglement-based QKD systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper analyzes security aspects of practical entanglement-based quantum
key distribution (QKD), namely, BBM92 or entanglement-based BB84 protocol.
Similar to prepare-and-measure QKD protocols, practical implementations of the
entanglement-based QKD have to rely upon non-ideal photon sources. A typical
solution for entanglement generation is the spontaneous parametric
down-conversion. However, this process creates not only single photon pairs,
but also quantum states with more than two photons, which potentially may lead
to security deterioration. We show that this effect does not impair the
security of entanglement-based QKD systems. We also review the available
security proofs and show that properties of the entanglement source have
nothing to do with security degradation.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Empirical Risk-aware Machine Learning on Trojan-Horse Detection for Trusted Quantum Key Distribution Networks [31.857236131842843]
Quantum key distribution (QKD) is a cryptographic technique that offers high levels of data security during transmission.
The existence of a gap between theoretical concepts and practical implementation has raised concerns about the trustworthiness of QKD networks.
We propose the implementation of risk-aware machine learning techniques that present risk analysis for Trojan-horse attacks over the time-variant quantum channel.
arXiv Detail & Related papers (2024-01-26T03:36:13Z) - Security of the decoy-state BB84 protocol with imperfect state
preparation [0.0]
We study the security of the efficient decoy-state BB84 QKD protocol in the presence of source flaws.
We investigate the non-Poissonian photon-number statistics due to coherent-state intensity fluctuations and the basis-dependence of the source due to non-ideal polarization state preparation.
arXiv Detail & Related papers (2023-10-02T19:59:57Z) - Mitigating the source-side channel vulnerability by characterization of
photon statistics [1.3458279593461016]
Quantum key distribution (QKD) theoretically offers unconditional security.
Unfortunately, the gap between theory and practice threatens side-channel attacks on practical QKD systems.
We aim to bridge the gap between theory and practice to achieve information-theoretic security.
arXiv Detail & Related papers (2023-08-28T08:37:59Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Security of differential phase shift QKD from relativistic principles [1.114274092885218]
This work presents the first full security proof of DPS QKD against general attacks.
The proof combines techniques from quantum information theory, quantum optics, and relativity.
Our results shed light on the range of applicability of state-of-the-art security proof techniques.
arXiv Detail & Related papers (2023-01-26T19:00:00Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Device-Independent-Quantum-Randomness-Enhanced Zero-Knowledge Proof [25.758352536166502]
Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement.
As an efficient variant of ZKP, non-interactive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir is essential to a wide spectrum of applications.
arXiv Detail & Related papers (2021-11-12T13:36:43Z) - Security of the decoy state method for quantum key distribution [0.0]
Quantum cryptography or, more precisely, quantum key distribution (QKD) is one of the advanced areas in the field of quantum technologies.
This paper is devoted to the decoy state method, a countermeasure against vulnerabilities caused by the use of coherent states of light for QKD protocols.
arXiv Detail & Related papers (2021-01-25T14:33:04Z) - Security of quantum key distribution with detection-efficiency mismatch
in the multiphoton case [0.0]
Current security of QKD with detection-efficiency mismatch rely on the assumption of the single-photon light source on the sender side or on the assumption of the single-photon input of the receiver side.
Here we present a rigorous security proof without these assumptions and, thus, solve this important problem and prove the security of QKD with detection-efficiency mismatch against general attacks.
arXiv Detail & Related papers (2020-04-16T17:55:30Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.