Disorder-free localisation in continuous-time quantum walks : Role of
symmetries
- URL: http://arxiv.org/abs/2307.01963v3
- Date: Tue, 2 Jan 2024 02:30:53 GMT
- Title: Disorder-free localisation in continuous-time quantum walks : Role of
symmetries
- Authors: A. P. Balachandran, Anjali Kundalpady, Pramod Padmanabhan, Akash Sinha
- Abstract summary: We investigate the phenomenon of disorder-free localisation in quantum systems with global permutation symmetry.
We find that interactions that preserve and break the global permutation symmetry sustains localisation.
Similar localisation also occurs for a permutation symmetric Heisenberg spin chain and permutation symmetric bosonic systems.
- Score: 1.6874375111244329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We investigate the phenomenon of disorder-free localisation in quantum
systems with global permutation symmetry. We use permutation group theory to
systematically construct permutation symmetric many-fermion Hamiltonians and
interpret them as generators of continuous-time quantum walks. When the number
of fermions is very large we find that all the canonical basis states localise
at all times, without the introduction of any disorder coefficients. This
time-independent localisation is not the result of any emergent disorder
distinguishing it from existing mechanisms for disorder-free localisation. Next
we establish the conditions under which the localisation is preserved. We find
that interactions that preserve and break the global permutation symmetry
sustains localisation. Furthermore the basis states of systems with reduced
permutation symmetry, localise even for a small number of fermions when the
symmetry-reducing parameters are tuned accordingly. We show that similar
localisation also occurs for a permutation symmetric Heisenberg spin chain and
permutation symmetric bosonic systems, implying that the localisation is
independent of the superselected symmetry. Finally we make connections of the
Hamiltonians studied here to the adjacency matrices of graphs and use this to
propose a prescription for disorder-free localisation in continuous-time
quantum walk systems. Many of the models proposed here feature all-to-all
connectivity and can be potentially realised on superconducting quantum
circuits, trapped ion systems and ultracold atoms.
Related papers
- Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Threefold Way for Typical Entanglement [0.0]
A typical quantum state with no symmetry can be realized by letting a random unitary act on a fixed state.
Our work establishes the entanglement counterpart of the Dyson's threefold way for Hamiltonians with symmetries.
arXiv Detail & Related papers (2024-10-15T06:11:10Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Anomalies of Average Symmetries: Entanglement and Open Quantum Systems [0.0]
We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues.
We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems.
arXiv Detail & Related papers (2023-12-14T16:10:49Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Nonequilibrium symmetry-protected topological order: emergence of
semilocal Gibbs ensembles [0.0]
We consider nonequilibrium time evolution in quantum spin chains after a global quench.
Because of them, the stationary state emerging at infinite time can exhibit exceptional features.
Among the exceptional properties, we find that, at late times, the excess of entropy of a spin block triggered by a local perturbation in the initial state grows logarithmically with the subsystem's length.
arXiv Detail & Related papers (2022-05-04T17:55:10Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - Quantum many-body attractors [0.0]
We discuss how an extensive set of strictly local dynamical symmetries can exist in a quantum system.
These strictly local symmetries lead to spontaneous breaking of continuous time-translation symmetry.
We provide an explicit recipe for constructing Hamiltonians featuring local dynamical symmetries.
arXiv Detail & Related papers (2020-08-25T16:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.