論文の概要: Emoji Prediction in Tweets using BERT
- arxiv url: http://arxiv.org/abs/2307.02054v3
- Date: Sat, 26 Aug 2023 11:02:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 23:12:52.755327
- Title: Emoji Prediction in Tweets using BERT
- Title(参考訳): BERTを用いたツイートの絵文字予測
- Authors: Muhammad Osama Nusrat, Zeeshan Habib, Mehreen Alam and Saad Ahmed
Jamal
- Abstract要約: 本稿では,広く使われている事前学習型言語モデルであるBERTを用いた絵文字予測のためのトランスフォーマーに基づく手法を提案する。
我々はBERTをテキストと絵文字の両方を含む大量のテキスト(つぶやき)のコーパスで微調整し、与えられたテキストに対して最も適切な絵文字を予測する。
実験の結果,提案手法は,75%以上の精度で絵文字の予測において,最先端のモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the use of emojis in social media has increased
dramatically, making them an important element in understanding online
communication. However, predicting the meaning of emojis in a given text is a
challenging task due to their ambiguous nature. In this study, we propose a
transformer-based approach for emoji prediction using BERT, a widely-used
pre-trained language model. We fine-tuned BERT on a large corpus of text
(tweets) containing both text and emojis to predict the most appropriate emoji
for a given text. Our experimental results demonstrate that our approach
outperforms several state-of-the-art models in predicting emojis with an
accuracy of over 75 percent. This work has potential applications in natural
language processing, sentiment analysis, and social media marketing.
- Abstract(参考訳): 近年、ソーシャルメディアにおける絵文字の利用は劇的に増加し、オンラインコミュニケーションを理解する上で重要な要素となっている。
しかし,テキスト中の絵文字の意味を予測することは,そのあいまいさから難しい課題である。
本研究では,広く使われている事前学習型言語モデルであるBERTを用いた絵文字予測のためのトランスフォーマーに基づく手法を提案する。
我々はBERTをテキストと絵文字の両方を含む大量のテキスト(ツイート)で微調整し、与えられたテキストに最適な絵文字を予測する。
実験の結果,75%以上の精度で絵文字を予測する手法が最先端モデルよりも優れていることがわかった。
この研究は自然言語処理、感情分析、ソーシャルメディアマーケティングに潜在的な応用がある。
関連論文リスト
- Semantics Preserving Emoji Recommendation with Large Language Models [47.94761630160614]
既存の絵文字レコメンデーションメソッドは、ユーザーが元のテキストで選択した正確な絵文字にマッチする能力に基づいて、主に評価される。
本稿では,ユーザのテキストとのセマンティックな整合性を維持する絵文字を推薦するモデルの能力を計測する,絵文字推薦のための新しいセマンティックス保存フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-16T22:27:46Z) - EmojiLM: Modeling the New Emoji Language [44.23076273155259]
我々は,大規模言語モデルからテキスト絵文字並列コーパスであるText2Emojiを開発した。
並列コーパスに基づいて,テキスト・絵文字双方向翻訳に特化したシーケンス・ツー・シーケンス・モデルである絵文字LMを蒸留する。
提案モデルでは,強いベースラインを上回り,平行コーパスは絵文字関連下流タスクに有効である。
論文 参考訳(メタデータ) (2023-11-03T07:06:51Z) - Emojich -- zero-shot emoji generation using Russian language: a
technical report [52.77024349608834]
エモジッチ(Emojich)は、ロシア語の字幕を条件として絵文字を生成するテキスト・画像ニューラルネットワークである。
我々は,事前訓練された大型モデルruDALL-E Malevich(XL) 1.3Bパラメータの微調整段階における一般化能力を維持することを目的としている。
論文 参考訳(メタデータ) (2021-12-04T23:37:32Z) - Emoji-aware Co-attention Network with EmoGraph2vec Model for Sentiment
Anaylsis [9.447106020795292]
我々はEmoGraph2vecと呼ばれる絵文字表現を学習し、絵文字対応のコアテンションネットワークを設計する手法を提案する。
我々のモデルは、テキストと絵文字を組み込むコアテンション機構を設計し、圧縮と励起ブロックを畳み込みニューラルネットワークに統合する。
実験結果から,提案モデルは,ベンチマークデータセットの感情分析において,いくつかのベースラインを上回り得ることが示された。
論文 参考訳(メタデータ) (2021-10-27T08:01:10Z) - Black or White but never neutral: How readers perceive identity from
yellow or skin-toned emoji [90.14874935843544]
近年の研究は、ソーシャルメディア上でのアイデンティティ表現と絵文字利用の関係を確立した。
この研究は、言語と同様に、読者がそのような自己表現の行為に敏感かどうかを問うもので、著者のアイデンティティを理解するために使用する。
論文 参考訳(メタデータ) (2021-05-12T18:23:51Z) - Semantic Journeys: Quantifying Change in Emoji Meaning from 2012-2018 [66.28665205489845]
絵文字のセマンティクスが時間とともにどのように変化するかに関する最初の縦断的研究を行い、計算言語学から6年間のtwitterデータに適用した。
絵文字のセマンティックな発達において5つのパターンを識別し、抽象的な絵文字がより少ないほど意味的変化を起こす可能性が高くなることを示す。
絵文字とセマンティクスに関する今後の作業を支援するために、私たちは、絵文字のセマンティックな変化を調べるために誰でも使用できるウェブベースのインターフェイスとともに、データを公開します。
論文 参考訳(メタデータ) (2021-05-03T13:35:10Z) - A `Sourceful' Twist: Emoji Prediction Based on Sentiment, Hashtags and
Application Source [1.6818451361240172]
モデルが関係する感情を理解し、テキストに最適な絵文字を予測するのを助けるためにTwitterの機能を使用することの重要性を紹介します。
データ分析とニューラルネットワークモデルのパフォーマンス評価は、ハッシュタグとアプリケーションソースを特徴として使用することで、異なる情報をエンコードすることができ、絵文字の予測に有効であることを示している。
論文 参考訳(メタデータ) (2021-03-14T03:05:04Z) - Assessing Emoji Use in Modern Text Processing Tools [35.79765461713127]
絵文字は視覚的魅力と人間の感情を鮮明に伝える能力から、デジタルコミュニケーションにおいてユビキタスになりつつある。
ソーシャルメディアや他のインスタントメッセージングにおける絵文字の普及は、絵文字を含むテキストを操作するシステムやツールの必要性も高まっている。
本研究では,絵文字を用いたツイートのテストセットを検討することで,このサポートを評価する。そこでは,著名なnlpおよびテキスト処理ツールが適切に処理できるかどうかについて,一連の実験を行う。
論文 参考訳(メタデータ) (2021-01-02T11:38:05Z) - Emoji Prediction: Extensions and Benchmarking [30.642840676899734]
絵文字予測タスクは、テキストに関連付けられた適切な絵文字セットを予測することを目的としている。
我々は、絵文字予測タスクの既存の設定を拡張し、よりリッチな絵文字セットを含め、複数ラベルの分類を可能にする。
トランスフォーマーネットワークに基づくマルチクラス・マルチラベル絵文字予測のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-07-14T22:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。