Harmonizing Feature Attributions Across Deep Learning Architectures:
Enhancing Interpretability and Consistency
- URL: http://arxiv.org/abs/2307.02150v3
- Date: Tue, 25 Jul 2023 14:32:41 GMT
- Title: Harmonizing Feature Attributions Across Deep Learning Architectures:
Enhancing Interpretability and Consistency
- Authors: Md Abdul Kadir, Gowtham Krishna Addluri, Daniel Sonntag
- Abstract summary: This study examines the generalization of feature attributions across various deep learning architectures.
We aim to develop a more coherent and optimistic understanding of feature attributions.
Our findings highlight the potential for harmonized feature attribution methods to improve interpretability and foster trust in machine learning applications.
- Score: 2.2237337682863125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring the trustworthiness and interpretability of machine learning models
is critical to their deployment in real-world applications. Feature attribution
methods have gained significant attention, which provide local explanations of
model predictions by attributing importance to individual input features. This
study examines the generalization of feature attributions across various deep
learning architectures, such as convolutional neural networks (CNNs) and vision
transformers. We aim to assess the feasibility of utilizing a feature
attribution method as a future detector and examine how these features can be
harmonized across multiple models employing distinct architectures but trained
on the same data distribution. By exploring this harmonization, we aim to
develop a more coherent and optimistic understanding of feature attributions,
enhancing the consistency of local explanations across diverse deep-learning
models. Our findings highlight the potential for harmonized feature attribution
methods to improve interpretability and foster trust in machine learning
applications, regardless of the underlying architecture.
Related papers
- Differentiation and Specialization of Attention Heads via the Refined Local Learning Coefficient [0.49478969093606673]
We introduce refined variants of the Local Learning Coefficient (LLC), a measure of model complexity grounded in singular learning theory.
We study the development of internal structure in transformer language models during training.
arXiv Detail & Related papers (2024-10-03T20:51:02Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models.
The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes.
arXiv Detail & Related papers (2024-07-04T14:36:49Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Interpreting and improving deep-learning models with reality checks [13.287382944078562]
This chapter covers recent work aiming to interpret models by attributing importance to features and feature groups for a single prediction.
We show how these attributions can be used to directly improve the generalization of a neural network or to distill it into a simple model.
arXiv Detail & Related papers (2021-08-16T00:58:15Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - A Framework to Learn with Interpretation [2.3741312212138896]
We present a novel framework to jointly learn a predictive model and its associated interpretation model.
We seek for a small-size dictionary of high level attribute functions that take as inputs the outputs of selected hidden layers.
A detailed pipeline to visualize the learnt features is also developed.
arXiv Detail & Related papers (2020-10-19T09:26:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.