Data-driven Predictive Latency for 5G: A Theoretical and Experimental
Analysis Using Network Measurements
- URL: http://arxiv.org/abs/2307.02329v3
- Date: Thu, 31 Aug 2023 12:44:58 GMT
- Title: Data-driven Predictive Latency for 5G: A Theoretical and Experimental
Analysis Using Network Measurements
- Authors: Marco Skocaj, Francesca Conserva, Nicol Sarcone Grande, Andrea Orsi,
Davide Micheli, Giorgio Ghinamo, Simone Bizzarri and Roberto Verdone
- Abstract summary: We present an analytical formulation of the user-plane latency as a Hypoexponential distribution.
We test our predictive framework using data gathered from scenarios of vehicular mobility, dense-urban traffic, and social gathering events.
- Score: 0.7643181805997241
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of novel 5G services and applications with binding latency
requirements and guaranteed Quality of Service (QoS) hastened the need to
incorporate autonomous and proactive decision-making in network management
procedures. The objective of our study is to provide a thorough analysis of
predictive latency within 5G networks by utilizing real-world network data that
is accessible to mobile network operators (MNOs). In particular, (i) we present
an analytical formulation of the user-plane latency as a Hypoexponential
distribution, which is validated by means of a comparative analysis with
empirical measurements, and (ii) we conduct experimental results of
probabilistic regression, anomaly detection, and predictive forecasting
leveraging on emerging domains in Machine Learning (ML), such as Bayesian
Learning (BL) and Machine Learning on Graphs (GML). We test our predictive
framework using data gathered from scenarios of vehicular mobility, dense-urban
traffic, and social gathering events. Our results provide valuable insights
into the efficacy of predictive algorithms in practical applications.
Related papers
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Cellular Traffic Prediction Using Online Prediction Algorithms [5.416701003120508]
This paper investigates the efficacy of live prediction algorithms for forecasting cellular network traffic in real-time scenarios.
We apply two live prediction algorithms on machine learning models, one of which is recently proposed Fast LiveStream Prediction (FLSP) algorithm.
Our study reveals that the FLSP algorithm can halve the required bandwidth for asynchronous data reporting compared to conventional online prediction algorithms.
arXiv Detail & Related papers (2024-05-08T17:36:14Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
This paper presents a machine learning-based framework tailored for forecasting bursty traffic in ALOHA networks.
We develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network.
We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics.
arXiv Detail & Related papers (2024-05-08T17:28:07Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Federated Learning for 5G Base Station Traffic Forecasting [0.0]
We investigate the efficacy of distributed learning applied to raw base station LTE data for time-series forecasting.
Our results show that the learning architectures adapted to the federated setting yield equivalent prediction error to the centralized setting.
In addition, preprocessing techniques on base stations enhance forecasting accuracy, while advanced federated aggregators do not surpass simpler approaches.
arXiv Detail & Related papers (2022-11-28T11:03:29Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - An NWDAF Approach to 5G Core Network Signaling Traffic: Analysis and
Characterization [3.5573601621032935]
This paper focuses on demonstrating a working system prototype of the 5G Core (5GC) network and the Network Data Analytics Function (NWDAF) used to bring the benefits of data-driven techniques to fruition.
Analyses of the network-generated data explore core intra-network interactions through unsupervised learning, clustering, and evaluate these results as insights for future opportunities and works.
arXiv Detail & Related papers (2022-09-21T15:21:59Z) - Transfer Learning Based Efficient Traffic Prediction with Limited
Training Data [3.689539481706835]
Efficient prediction of internet traffic is an essential part of Self Organizing Network (SON) for ensuring proactive management.
Deep sequence model in network traffic prediction with limited training data has not been studied extensively in the current works.
We investigated and evaluated the performance of the deep transfer learning technique in traffic prediction with inadequate historical data.
arXiv Detail & Related papers (2022-05-09T14:44:39Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
We propose a new framework for evaluating the generalization capabilities of trained networks.
Specifically, we introduce two new measures for accurately predicting generalization gaps.
We attain better predictive scores than the current state-of-the-art measures on a majority of tasks in the Predicting Generalization in Deep Learning (PGDL) NeurIPS 2020 competition.
arXiv Detail & Related papers (2021-06-09T01:37:36Z) - Unsatisfied Today, Satisfied Tomorrow: a simulation framework for
performance evaluation of crowdsourcing-based network monitoring [68.8204255655161]
We propose an empirical framework tailored to assess the quality of the detection of under-performing cells.
The framework simulates both the processes of satisfaction surveys delivery and users satisfaction prediction.
We use the simulation framework to test empirically the performance of under-performing sites detection in general scenarios.
arXiv Detail & Related papers (2020-10-30T10:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.