論文の概要: Detecting Images Generated by Deep Diffusion Models using their Local
Intrinsic Dimensionality
- arxiv url: http://arxiv.org/abs/2307.02347v3
- Date: Thu, 20 Jul 2023 09:54:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 17:17:24.364656
- Title: Detecting Images Generated by Deep Diffusion Models using their Local
Intrinsic Dimensionality
- Title(参考訳): 局所固有次元を用いた深部拡散モデルによる画像の検出
- Authors: Peter Lorenz, Ricard Durall and Janis Keuper
- Abstract要約: 拡散モデルは驚くほどリアルな画像の視覚合成に成功している。
これにより、悪意のある目的のために、彼らの可能性に対する強い懸念が持ち上がる。
合成画像の自動検出に軽量な多重局所固有次元法(multiLID)を提案する。
- 参考スコア(独自算出の注目度): 3.4376560669160394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models recently have been successfully applied for the visual
synthesis of strikingly realistic appearing images. This raises strong concerns
about their potential for malicious purposes. In this paper, we propose using
the lightweight multi Local Intrinsic Dimensionality (multiLID), which has been
originally developed in context of the detection of adversarial examples, for
the automatic detection of synthetic images and the identification of the
according generator networks. In contrast to many existing detection
approaches, which often only work for GAN-generated images, the proposed method
provides close to perfect detection results in many realistic use cases.
Extensive experiments on known and newly created datasets demonstrate that the
proposed multiLID approach exhibits superiority in diffusion detection and
model identification. Since the empirical evaluations of recent publications on
the detection of generated images are often mainly focused on the
"LSUN-Bedroom" dataset, we further establish a comprehensive benchmark for the
detection of diffusion-generated images, including samples from several
diffusion models with different image sizes.
- Abstract(参考訳): 近年,非常にリアルな画像の視覚的合成に拡散モデルが適用されている。
これにより、悪質な目的に対する潜在的な懸念が高まる。
本稿では,合成画像の自動検出とそれに基づく生成ネットワークの同定のために,元来,敵対例の検出の文脈で開発された軽量なマルチローカル固有次元(multiLID)を提案する。
GAN生成画像に対してのみ動作する多くの既存の検出手法とは対照的に,提案手法は現実的なユースケースの多くにおいて,ほぼ完璧な検出結果を提供する。
既知のデータセットと新たに作成されたデータセットに関する広範な実験は、提案手法が拡散検出とモデル同定において優れていることを示している。
生成画像の検出に関する最近の出版物の実証的評価は、主に「lsun-bedroom」データセットに焦点を当てているため、画像サイズが異なる複数の拡散モデルからのサンプルを含む拡散生成画像の検出に関する包括的なベンチマークを確立する。
関連論文リスト
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE)は、ディープフェイク検出に特化した新しい埋め込み空間である。
CoDEは、グローバルローカルな類似性をさらに強化することで、対照的な学習を通じて訓練される。
論文 参考訳(メタデータ) (2024-07-29T18:00:10Z) - Detecting Out-Of-Distribution Earth Observation Images with Diffusion Models [2.1178416840822027]
本研究では,拡散モデルの再構成誤差がリモートセンシング画像の非教師外分布検出器として有効であることを示す。
本稿では,拡散モデルの確率フローODEを用いた新しい再構成ベースのスコアラODEEDを紹介する。
遠隔センシングにおける異常検出のための生成モデルのより良い利用に向けた道を開くことを目的としている。
論文 参考訳(メタデータ) (2024-04-19T07:07:36Z) - Diffusion Facial Forgery Detection [56.69763252655695]
本稿では,顔に焦点をあてた拡散生成画像を対象とした包括的データセットであるDiFFを紹介する。
人体実験といくつかの代表的な偽造検出手法を用いて,DiFFデータセットの広範な実験を行った。
その結果、人間の観察者と自動検出者の2値検出精度は30%以下であることが判明した。
論文 参考訳(メタデータ) (2024-01-29T03:20:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
本稿では拡散生成画像検出(SeDID)のためのステップワイド誤差と呼ばれる新しい検出法を提案する。
SeDIDは拡散モデルのユニークな特性、すなわち決定論的逆転と決定論的逆退誤差を利用する。
我々の研究は拡散モデル生成画像の識別に重要な貢献をしており、人工知能のセキュリティ分野における重要なステップとなっている。
論文 参考訳(メタデータ) (2023-07-12T16:16:37Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
本研究では,実際の画像と区別できない画像の新たな検出方法を提案する。
本手法は、既知の生成モデルから画像を検出し、微調整された生成モデル間の関係を確立することができる。
本手法は,Stable Diffusion とMidversa が生成した画像に対して,最先端の事前学習検出手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-03-19T20:31:38Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
拡散再構成誤り(DIRE)という新しい表現を提案する。
DIREは、予め訓練された拡散モデルにより、入力画像とその再構成画像間の誤差を測定する。
DIREは生成されたイメージと実際のイメージを区別するためのブリッジとして機能する、というヒントを提供する。
論文 参考訳(メタデータ) (2023-03-16T13:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。