論文の概要: Distance Preserving Machine Learning for Uncertainty Aware Accelerator
Capacitance Predictions
- arxiv url: http://arxiv.org/abs/2307.02367v1
- Date: Wed, 5 Jul 2023 15:32:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 13:17:45.731782
- Title: Distance Preserving Machine Learning for Uncertainty Aware Accelerator
Capacitance Predictions
- Title(参考訳): 不確かさ認識型加速器容量予測のための距離保存機械学習
- Authors: Steven Goldenberg, Malachi Schram, Kishansingh Rajput, Thomas Britton,
Chris Pappas, Dan Lu, Jared Walden, Majdi I. Radaideh, Sarah Cousineau,
Sudarshan Harave
- Abstract要約: ディープニューラルネットワークとガウス過程近似技術は有望な結果を示しているが、標準ディープニューラルネットワーク層による次元削減はガウス過程モデルに必要な距離情報を維持することが保証されていない。
本研究では, スペクトル正規化高密度層に対する特異値分解法を, ディープ・ニューラル・ガウス過程近似モデルの特徴抽出器として用いた。
本モデルでは, 距離保存の精度が向上し, 1%未満の誤差で分配容量を予測できる。
- 参考スコア(独自算出の注目度): 1.1776336798216411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Providing accurate uncertainty estimations is essential for producing
reliable machine learning models, especially in safety-critical applications
such as accelerator systems. Gaussian process models are generally regarded as
the gold standard method for this task, but they can struggle with large,
high-dimensional datasets. Combining deep neural networks with Gaussian process
approximation techniques have shown promising results, but dimensionality
reduction through standard deep neural network layers is not guaranteed to
maintain the distance information necessary for Gaussian process models. We
build on previous work by comparing the use of the singular value decomposition
against a spectral-normalized dense layer as a feature extractor for a deep
neural Gaussian process approximation model and apply it to a capacitance
prediction problem for the High Voltage Converter Modulators in the Oak Ridge
Spallation Neutron Source. Our model shows improved distance preservation and
predicts in-distribution capacitance values with less than 1% error.
- Abstract(参考訳): 正確な不確実性推定を提供することは、信頼性の高い機械学習モデル、特にアクセラレータシステムのような安全クリティカルなアプリケーションを作成するのに不可欠である。
ガウス過程モデルは一般にこのタスクの金本位法と見なされるが、大きな高次元データセットで苦労することがある。
ディープニューラルネットワークとガウスプロセス近似技術を組み合わせることで有望な結果が得られたが、ガウスプロセスモデルに必要な距離情報を維持するために標準ディープニューラルネットワーク層による次元性の低減は保証されていない。
本研究では, ディープニューラルガウス過程近似モデルの特徴抽出器として, スペクトル正規化高密度層に対する特異値分解の利用を比較検討し, オークリッジスパレーション中性子源における高電圧コンバータ変調器の容量予測問題に適用する。
本モデルでは, 距離保存が向上し, 1%未満の誤差で分配容量値を予測する。
関連論文リスト
- Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
大規模なデータセットでトレーニングされた大規模なニューラルネットワークは、マシンラーニングの主要なパラダイムになっています。
この論文は、モデル不確実性を持つニューラルネットワークを装備するためのスケーラブルな手法を開発する。
論文 参考訳(メタデータ) (2024-04-29T23:38:58Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
本稿では,限られたデータを扱う音声変換手法を提案する。
変分深層学習(SVDKL)に基づく。
非滑らかでより複雑な関数を推定することができる。
論文 参考訳(メタデータ) (2023-09-08T16:32:47Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - A hybrid data driven-physics constrained Gaussian process regression
framework with deep kernel for uncertainty quantification [21.972192114861873]
本稿では,データ駆動物理制約付きガウスプロセス回帰フレームワークを提案する。
物理知識をボルツマン・ギブス分布でエンコードし、最大可能性(ML)アプローチでモデルを導出する。
提案モデルでは,高次元問題において良好な結果が得られ,その不確かさを正確に伝播し,ラベル付きデータを極めて限定的に提供した。
論文 参考訳(メタデータ) (2022-05-13T07:53:49Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Simple and Principled Uncertainty Estimation with Deterministic Deep
Learning via Distance Awareness [24.473250414880454]
単一ディープニューラルネットワーク(DNN)のみを必要とする高品質不確実性推定の原理的アプローチについて検討する。
この不確実性定量化を最小限の学習問題として定式化することにより、まず入力空間内のトレーニングデータから試験例の距離を定量化する入力距離認識を同定する。
次に, スペクトル正規化ニューラルガウス過程 (SNGP) を提案する。
論文 参考訳(メタデータ) (2020-06-17T19:18:22Z) - Semi-supervised deep learning for high-dimensional uncertainty
quantification [6.910275451003041]
本稿では,次元削減と信頼性解析のための半教師付き学習フレームワークを提案する。
オートエンコーダは、まず高次元空間を低次元潜在空間にマッピングするために用いられる。
ディープフィードフォワードニューラルネットワークを用いてマッピング関係を学習し、潜伏空間を再構築する。
論文 参考訳(メタデータ) (2020-06-01T15:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。