論文の概要: A hybrid data driven-physics constrained Gaussian process regression
framework with deep kernel for uncertainty quantification
- arxiv url: http://arxiv.org/abs/2205.06494v1
- Date: Fri, 13 May 2022 07:53:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 14:11:53.800388
- Title: A hybrid data driven-physics constrained Gaussian process regression
framework with deep kernel for uncertainty quantification
- Title(参考訳): 不確実性定量のためのディープカーネル付きハイブリッドデータ駆動物理制約ガウスプロセス回帰フレームワーク
- Authors: Cheng Chang and Tieyong Zeng
- Abstract要約: 本稿では,データ駆動物理制約付きガウスプロセス回帰フレームワークを提案する。
物理知識をボルツマン・ギブス分布でエンコードし、最大可能性(ML)アプローチでモデルを導出する。
提案モデルでは,高次元問題において良好な結果が得られ,その不確かさを正確に伝播し,ラベル付きデータを極めて限定的に提供した。
- 参考スコア(独自算出の注目度): 21.972192114861873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian process regression (GPR) has been a well-known machine learning
method for various applications such as uncertainty quantifications (UQ).
However, GPR is inherently a data-driven method, which requires sufficiently
large dataset. If appropriate physics constraints (e.g. expressed in partial
differential equations) can be incorporated, the amount of data can be greatly
reduced and the accuracy further improved. In this work, we propose a hybrid
data driven-physics constrained Gaussian process regression framework. We
encode the physics knowledge with Boltzmann-Gibbs distribution and derive our
model through maximum likelihood (ML) approach. We apply deep kernel learning
method. The proposed model learns from both data and physics constraints
through the training of a deep neural network, which serves as part of the
covariance function in GPR. The proposed model achieves good results in
high-dimensional problem, and correctly propagate the uncertainty, with very
limited labelled data provided.
- Abstract(参考訳): ガウス過程回帰 (GPR) は不確実性定量化 (UQ) などの様々な応用においてよく知られた機械学習手法である。
しかし、GPRは本質的にデータ駆動方式であり、十分に大きなデータセットを必要とする。
適切な物理制約(例えば偏微分方程式で表される)を組み込むことができれば、データの量は大幅に削減され、精度がさらに向上する。
本研究では,ハイブリッドなデータ駆動物理制約付きガウスプロセス回帰フレームワークを提案する。
物理知識をボルツマン・ギブス分布でエンコードし、最大可能性(ML)アプローチでモデルを導出する。
深層カーネル学習法を適用した。
提案モデルは,GPRの共分散関数の一部として機能するディープニューラルネットワークのトレーニングを通じて,データと物理の制約から学習する。
提案モデルでは,高次元問題において良好な結果が得られ,その不確実性を正確に伝播する。
関連論文リスト
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting [4.675221539472143]
大規模なデータセットに正規ノイズが汚染されたスパースガウス過程回帰モデルを適用するためのスケーラブルな推論アルゴリズムを提案する。
提案手法は, 人工ニューラルネットワークベースラインと比較して, 類似のカバレッジと精度の予測間隔が短いことを示す。
論文 参考訳(メタデータ) (2024-02-27T15:08:57Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
本稿では,限られたデータを扱う音声変換手法を提案する。
変分深層学習(SVDKL)に基づく。
非滑らかでより複雑な関数を推定することができる。
論文 参考訳(メタデータ) (2023-09-08T16:32:47Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
局所近似過程回帰を用いて特定のひずみ空間における応力出力を予測する方法を示す。
FE設定におけるグローバル構造問題を解決する場合のlaGPR近似の局所的性質に適応するために、修正されたニュートン・ラフソン手法が提案される。
論文 参考訳(メタデータ) (2021-05-07T14:49:28Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Physics Informed Deep Kernel Learning [24.033468062984458]
物理インフォームドディープカーネル学習(PI-DKL)は、遅延源を持つ微分方程式で表される物理知識を利用する。
効率的かつ効果的な推論のために、潜伏変数を疎外し、崩壊したモデルエビデンスローバウンド(ELBO)を導出する。
論文 参考訳(メタデータ) (2020-06-08T22:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。