A Dataset of Inertial Measurement Units for Handwritten English
Alphabets
- URL: http://arxiv.org/abs/2307.02480v1
- Date: Wed, 5 Jul 2023 17:54:36 GMT
- Title: A Dataset of Inertial Measurement Units for Handwritten English
Alphabets
- Authors: Hari Prabhat Gupta and Rahul Mishra
- Abstract summary: This paper presents an end-to-end methodology for collecting datasets to recognize handwritten English alphabets.
The IMUs are utilized to capture the dynamic movement patterns associated with handwriting, enabling more accurate recognition of alphabets.
- Score: 16.74710649245842
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents an end-to-end methodology for collecting datasets to
recognize handwritten English alphabets by utilizing Inertial Measurement Units
(IMUs) and leveraging the diversity present in the Indian writing style. The
IMUs are utilized to capture the dynamic movement patterns associated with
handwriting, enabling more accurate recognition of alphabets. The Indian
context introduces various challenges due to the heterogeneity in writing
styles across different regions and languages. By leveraging this diversity,
the collected dataset and the collection system aim to achieve higher
recognition accuracy. Some preliminary experimental results demonstrate the
effectiveness of the dataset in accurately recognizing handwritten English
alphabet in the Indian context. This research can be extended and contributes
to the field of pattern recognition and offers valuable insights for developing
improved systems for handwriting recognition, particularly in diverse
linguistic and cultural contexts.
Related papers
- DiffusionPen: Towards Controlling the Style of Handwritten Text Generation [7.398476020996681]
DiffusionPen (DiffPen) is a 5-shot style handwritten text generation approach based on Latent Diffusion Models.
Our approach captures both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples.
Our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems.
arXiv Detail & Related papers (2024-09-09T20:58:25Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - Language Detection for Transliterated Content [0.0]
We study the widespread use of transliteration, where the English alphabet is employed to convey messages in native languages.
This paper addresses this challenge through a dataset of phone text messages in Hindi and Russian transliterated into English.
The research pioneers innovative approaches to identify and convert transliterated text.
arXiv Detail & Related papers (2024-01-09T15:40:54Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
This paper attempts to design and develop a model that can recognize handwritten characters for Kurdish alphabets using deep learning techniques.
A comprehensive dataset was created for handwritten Kurdish characters, which contains more than 40 thousand images.
The tested results reported a 96% accuracy rate, and training accuracy reported a 97% accuracy rate.
arXiv Detail & Related papers (2022-10-18T16:48:28Z) - Multilingual Word Sense Disambiguation with Unified Sense Representation [55.3061179361177]
We propose building knowledge and supervised-based Multilingual Word Sense Disambiguation (MWSD) systems.
We build unified sense representations for multiple languages and address the annotation scarcity problem for MWSD by transferring annotations from rich-sourced languages to poorer ones.
Evaluations of SemEval-13 and SemEval-15 datasets demonstrate the effectiveness of our methodology.
arXiv Detail & Related papers (2022-10-14T01:24:03Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
We put forward a sequence tagging BERT-based model enhanced with a graph-aware transformer architecture, which we evaluate on the task of collocation recognition in context.
Our results suggest that explicitly encoding syntactic dependencies in the model architecture is helpful, and provide insights on differences in collocation typification in English, Spanish and French.
arXiv Detail & Related papers (2022-05-23T16:47:37Z) - Extract, Integrate, Compete: Towards Verification Style Reading
Comprehension [66.2551168928688]
We present a new verification style reading comprehension dataset named VGaokao from Chinese Language tests of Gaokao.
To address the challenges in VGaokao, we propose a novel Extract-Integrate-Compete approach.
arXiv Detail & Related papers (2021-09-11T01:34:59Z) - More Than Words: Collocation Tokenization for Latent Dirichlet
Allocation Models [71.42030830910227]
We propose a new metric for measuring the clustering quality in settings where the models differ.
We show that topics trained with merged tokens result in topic keys that are clearer, more coherent, and more effective at distinguishing topics than those unmerged models.
arXiv Detail & Related papers (2021-08-24T14:08:19Z) - Interpretable Distance Metric Learning for Handwritten Chinese Character
Recognition [8.233701182710035]
We propose an interpretable distance metric learning approach for handwritten Chinese character recognition.
Our experimental results on a benchmark dataset demonstrate the superior efficiency, accuracy and interpretability of our proposed approach.
arXiv Detail & Related papers (2021-03-17T15:17:02Z) - Intrinsic Probing through Dimension Selection [69.52439198455438]
Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks.
Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it.
In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted.
arXiv Detail & Related papers (2020-10-06T15:21:08Z) - Spectral Graph-based Features for Recognition of Handwritten Characters:
A Case Study on Handwritten Devanagari Numerals [0.0]
We propose an approach that exploits the robust graph representation and spectral graph embedding concept to represent handwritten characters.
For corroboration of the efficacy of the proposed method, extensive experiments were carried out on the standard handwritten numeral Computer Vision Pattern Recognition, Unit of Indian Statistical Institute Kolkata dataset.
arXiv Detail & Related papers (2020-07-07T08:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.