論文の概要: TL-nvSRAM-CIM: Ultra-High-Density Three-Level ReRAM-Assisted
Computing-in-nvSRAM with DC-Power Free Restore and Ternary MAC Operations
- arxiv url: http://arxiv.org/abs/2307.02717v1
- Date: Thu, 6 Jul 2023 01:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 15:33:09.862950
- Title: TL-nvSRAM-CIM: Ultra-High-Density Three-Level ReRAM-Assisted
Computing-in-nvSRAM with DC-Power Free Restore and Ternary MAC Operations
- Title(参考訳): TL-nvSRAM-CIM: DC-Power Free Restore と Ternary MAC 操作による超高密度3レベル ReRAM-Assisted Computing-in-nvSRAM
- Authors: Dengfeng Wang, Liukai Xu, Songyuan Liu, zhi Li, Yiming Chen, Weifeng
He, Xueqing Li and Yanan Su
- Abstract要約: 本研究では,大規模NNモデルのための超高密度3レベルReRAM支援計算方式を提案する。
提案したTL-nvSRAM-CIMは、ステートアートよりも7.8倍高いストレージ密度を実現している。
- 参考スコア(独自算出の注目度): 4.579114894097854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accommodating all the weights on-chip for large-scale NNs remains a great
challenge for SRAM based computing-in-memory (SRAM-CIM) with limited on-chip
capacity. Previous non-volatile SRAM-CIM (nvSRAM-CIM) addresses this issue by
integrating high-density single-level ReRAMs on the top of high-efficiency
SRAM-CIM for weight storage to eliminate the off-chip memory access. However,
previous SL-nvSRAM-CIM suffers from poor scalability for an increased number of
SL-ReRAMs and limited computing efficiency. To overcome these challenges, this
work proposes an ultra-high-density three-level ReRAMs-assisted
computing-in-nonvolatile-SRAM (TL-nvSRAM-CIM) scheme for large NN models. The
clustered n-selector-n-ReRAM (cluster-nSnRs) is employed for reliable
weight-restore with eliminated DC power. Furthermore, a ternary SRAM-CIM
mechanism with differential computing scheme is proposed for energy-efficient
ternary MAC operations while preserving high NN accuracy. The proposed
TL-nvSRAM-CIM achieves 7.8x higher storage density, compared with the
state-of-art works. Moreover, TL-nvSRAM-CIM shows up to 2.9x and 1.9x enhanced
energy-efficiency, respectively, compared to the baseline designs of SRAM-CIM
and ReRAM-CIM, respectively.
- Abstract(参考訳): 大規模NNのためにチップ上のすべての重量を調節することは、オンチップ容量に制限のあるSRAMベースのコンピューティングインメモリ(SRAM-CIM)にとって、依然として大きな課題である。
従来の非揮発性SRAM-CIM(nvSRAM-CIM)は、高効率SRAM-CIMの上に高密度のシングルレベルReRAMを統合することでこの問題に対処し、オフチップメモリアクセスをなくした。
しかし、以前のSL-nvSRAM-CIMは、SL-ReRAMの増加と計算効率の制限によりスケーラビリティが低下していた。
これらの課題を克服するために、大規模なNNモデルのための超高密度3レベルReRAM支援非揮発性SRAM(TL-nvSRAM-CIM)方式を提案する。
クラスタ化されたn-selector-n-ReRAM (cluster-nSnRs) は、DC電力を排除した信頼性の高い重み復元に使用される。
さらに、高NN精度を維持しつつ、エネルギー効率のよい三値MAC演算に対して、微分計算方式による三値SRAM-CIM機構を提案する。
提案したTL-nvSRAM-CIMは、最先端技術と比較して7.8倍のストレージ密度を実現する。
さらに、TL-nvSRAM-CIMはSRAM-CIMとReRAM-CIMのベースライン設計と比較して最大2.9倍、エネルギー効率は1.9倍に向上した。
関連論文リスト
- LiVOS: Light Video Object Segmentation with Gated Linear Matching [116.58237547253935]
LiVOSはリニアアテンションによるリニアマッチングを利用する軽量メモリネットワークである。
長くて高解像度のビデオでは、STMベースのメソッドと53%のGPUメモリで一致し、32Gの消費者向けGPU上で4096pの推論をサポートする。
論文 参考訳(メタデータ) (2024-11-05T05:36:17Z) - Expanding Sparse Tuning for Low Memory Usage [103.43560327427647]
メモリ使用量が少ないスパースチューニングのためのSNELL(Sparse tuning with kerNelized LoRA)法を提案する。
低メモリ使用量を達成するため、SNELLはスカラー化のための調整可能な行列を2つの学習可能な低ランク行列に分解する。
コンペティションに基づくスペーシフィケーション機構は、チューナブルウェイトインデックスの保存を避けるためにさらに提案される。
論文 参考訳(メタデータ) (2024-11-04T04:58:20Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
我々は、リモートセンシング画像(RSI)の超高解像度化のために、視覚状態空間モデル(Mamba)を統合するための最初の試みを開発した。
より優れたSR再構築を実現するため,FMSRと呼ばれる周波数支援型Mambaフレームワークを考案した。
我々のFMSRは、周波数選択モジュール(FSM)、ビジョン状態空間モジュール(VSSM)、ハイブリッドゲートモジュール(HGM)を備えた多層融合アーキテクチャを備えている。
論文 参考訳(メタデータ) (2024-05-08T11:09:24Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Multi-level, Forming Free, Bulk Switching Trilayer RRAM for Neuromorphic
Computing at the Edge [0.0]
我々は三層金属酸化物スタックをベースとした成形・バルク切替RRAM技術を開発した。
我々は三層バルクRRAMクロスバーに基づくニューロモルフィック・コンピューティング・イン・メモリプラットフォームを開発した。
我々の研究は、厳格なサイズ、重み、パワー制約の下で、エッジでのニューロモルフィックコンピューティングの道を開いた。
論文 参考訳(メタデータ) (2023-10-20T22:37:46Z) - Evaluation of STT-MRAM as a Scratchpad for Training in ML Accelerators [9.877596714655096]
深層ニューラルネットワーク(DNN)のトレーニングは非常にメモリ集約的なプロセスである。
Spin-Transfer-Torque MRAM (STT-MRAM) は、加速器の訓練に望ましいいくつかの特性を提供する。
MRAMはシステムレベルのエネルギーを最大15-22倍改善することを示す。
論文 参考訳(メタデータ) (2023-08-03T20:36:48Z) - NEON: Enabling Efficient Support for Nonlinear Operations in Resistive
RAM-based Neural Network Accelerators [12.045126404373868]
Resistive Random-Access Memory(RRAM)は、ニューラルネットワーク(NN)ワークロードの高速化に適している。
NEONは、RRAMにおけるNNワークロードのエンドツーエンド実行を可能にする、新しいコンパイラ最適化である。
論文 参考訳(メタデータ) (2022-11-10T17:57:35Z) - Efficient Deep Learning Using Non-Volatile Memory Technology [12.866655564742889]
ディープラーニング(DL)アプリケーションのためのアーキテクチャにおいて、NVMベースのキャッシュを特徴付け、モデル化し、分析するための包括的なフレームワークであるDeepNVM++を紹介します。
アイソ容量の場合、STT-MRAMとSOT-MRAMは、従来のキャッシュと比較して最大3.8倍および4.7倍のエネルギー遅延生成物(EDP)と2.4倍および2.8倍の領域還元を提供する。
DeepNVM++ は STT-/SOT-MRAM 技術で実証されており、最後のレベルキャッシュのための NVM 技術のキャラクタリゼーション、モデリング、分析に使用することができる。
論文 参考訳(メタデータ) (2022-06-27T19:27:57Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - DeepNVM++: Cross-Layer Modeling and Optimization Framework of
Non-Volatile Memories for Deep Learning [11.228806840123084]
スピントランスファートルク磁気ランダムアクセスメモリ(STT-MRAM)やスピン軌道トルク磁気ランダムアクセスメモリ(SOT-MRAM)のような非揮発性メモリ(NVM)技術は、従来の技術に比べて大きな利点がある。
本研究では、ディープラーニング(DL)アプリケーションにおけるNVMベースのキャッシュを特徴づけ、モデル化し、分析するフレームワークであるDeepNVM++を紹介します。
論文 参考訳(メタデータ) (2020-12-08T16:53:25Z) - PAMS: Quantized Super-Resolution via Parameterized Max Scale [84.55675222525608]
深部畳み込みニューラルネットワーク(DCNN)は超解像処理(SR)において優位な性能を示した
本稿では,PAMS(Parameterized Max Scale)と呼ばれる新しい量子化手法を提案する。
実験により,提案手法はEDSRやRDNなどの既存のSRモデルを適切に圧縮・高速化できることが示された。
論文 参考訳(メタデータ) (2020-11-09T06:16:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。