論文の概要: VerifAI: Verified Generative AI
- arxiv url: http://arxiv.org/abs/2307.02796v2
- Date: Wed, 11 Oct 2023 03:16:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 08:05:56.679143
- Title: VerifAI: Verified Generative AI
- Title(参考訳): VerifAI: 検証された生成AI
- Authors: Nan Tang and Chenyu Yang and Ju Fan and Lei Cao and Yuyu Luo and Alon
Halevy
- Abstract要約: 生成AIは大きな進歩を遂げているが、その正確性と信頼性に関する懸念は拡大を続けている。
本稿では,データ管理の観点から生成AIの出力を検証することが,生成AIの新たな課題であることを示す。
私たちのビジョンは、検証可能な生成AIの開発を促進し、より信頼性が高く責任あるAIの利用に貢献することです。
- 参考スコア(独自算出の注目度): 22.14231506649365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI has made significant strides, yet concerns about the accuracy
and reliability of its outputs continue to grow. Such inaccuracies can have
serious consequences such as inaccurate decision-making, the spread of false
information, privacy violations, legal liabilities, and more. Although efforts
to address these risks are underway, including explainable AI and responsible
AI practices such as transparency, privacy protection, bias mitigation, and
social and environmental responsibility, misinformation caused by generative AI
will remain a significant challenge. We propose that verifying the outputs of
generative AI from a data management perspective is an emerging issue for
generative AI. This involves analyzing the underlying data from multi-modal
data lakes, including text files, tables, and knowledge graphs, and assessing
its quality and consistency. By doing so, we can establish a stronger
foundation for evaluating the outputs of generative AI models. Such an approach
can ensure the correctness of generative AI, promote transparency, and enable
decision-making with greater confidence. Our vision is to promote the
development of verifiable generative AI and contribute to a more trustworthy
and responsible use of AI.
- Abstract(参考訳): 生成AIは大きな進歩を遂げているが、アウトプットの正確性と信頼性に関する懸念は拡大を続けている。
このような不正確さは、不正確な意思決定、誤った情報の拡散、プライバシー侵害、法的負債など、重大な結果をもたらす可能性がある。
透明性、プライバシ保護、バイアス軽減、社会的および環境的責任といった、説明可能なAIと責任あるAIプラクティスを含む、これらのリスクに対処する努力が進行中である。
データ管理の観点から生成AIの出力を検証することは、生成AIの新たな課題である。
これには、テキストファイル、テーブル、ナレッジグラフを含むマルチモーダルデータレイクの基盤となるデータを分析し、その品質と一貫性を評価することが含まれる。
これにより、生成AIモデルの出力を評価するためのより強力な基盤を確立することができる。
このようなアプローチは、生成AIの正確性を確保し、透明性を促進し、より信頼性の高い意思決定を可能にする。
私たちのビジョンは、検証可能な生成AIの開発を促進し、より信頼性が高く責任あるAIの利用に貢献することです。
関連論文リスト
- Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
我々は、AIバイアス、定義、検出と緩和の方法、およびバイアスを評価するメトリクスの複雑さをレビューし、議論する。
また、人間中心の意思決定のさまざまな領域におけるAIの信頼性と広範な適用に関して、オープンな課題についても論じる。
論文 参考訳(メタデータ) (2024-08-28T06:04:25Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Explainable AI is Responsible AI: How Explainability Creates Trustworthy
and Socially Responsible Artificial Intelligence [9.844540637074836]
これは責任あるAIのトピックであり、信頼できるAIシステムを開発する必要性を強調している。
XAIは、責任あるAI(RAI)のためのビルディングブロックとして広く考えられている。
以上の結果から,XAIはRAIのすべての柱にとって不可欠な基盤である,という結論に至った。
論文 参考訳(メタデータ) (2023-12-04T00:54:04Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - It is not "accuracy vs. explainability" -- we need both for trustworthy
AI systems [0.0]
私たちは、AI技術が医療、ビジネス、交通、日常生活の多くの側面に影響を与えつつある、AI経済と社会の出現を目撃しています。
しかし、AIシステムはエラーを発生させ、バイアスを示し、データのノイズに敏感になり、しばしば技術的および司法的透明性が欠如し、その採用における信頼と課題が減少する可能性がある。
これらの最近の欠点や懸念は、科学的に記録されているだけでなく、自動運転車による事故、医療の偏見、有色人種のための雇用と顔認識システムなど、一般的な報道でも報告されている。
論文 参考訳(メタデータ) (2022-12-16T23:33:10Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Rebuilding Trust: Queer in AI Approach to Artificial Intelligence Risk
Management [0.0]
信頼できるAIは、AIシステムとそのクリエイターに対する信頼が失われたり、そもそも存在しないため、重要なトピックになっている。
私たちは、信頼できるAI開発、デプロイメント、監視のフレームワークは、フェミニストと非エクスプロイト的デザインの原則の両方を取り入れなければならないと論じています。
論文 参考訳(メタデータ) (2021-09-21T21:22:58Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。