論文の概要: PLIERS: a Popularity-Based Recommender System for Content Dissemination
in Online Social Networks
- arxiv url: http://arxiv.org/abs/2307.02865v1
- Date: Thu, 6 Jul 2023 09:04:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 14:33:23.706449
- Title: PLIERS: a Popularity-Based Recommender System for Content Dissemination
in Online Social Networks
- Title(参考訳): PLIERS: オンラインソーシャルネットワークにおけるコンテンツ拡散のための人気ベースのレコメンデーションシステム
- Authors: Valerio Arnaboldi, Mattia Giovanni Campana, Franca Delmastro, Elena
Pagani
- Abstract要約: PLIERSと呼ばれる新しいタグベースのレコメンデーションシステムを提案する。
これは、ユーザーが主にアイテムやタグに興味を持ち、既に所有しているものと同様の人気があるという仮定に依存している。
PLIERSは、アルゴリズムと推奨項目のパーソナライズレベルとの良好なトレードオフを達成することを目的としている。
- 参考スコア(独自算出の注目度): 5.505634045241288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel tag-based recommender system called PLIERS,
which relies on the assumption that users are mainly interested in items and
tags with similar popularity to those they already own. PLIERS is aimed at
reaching a good tradeoff between algorithmic complexity and the level of
personalization of recommended items. To evaluate PLIERS, we performed a set of
experiments on real OSN datasets, demonstrating that it outperforms
state-of-the-art solutions in terms of personalization, relevance, and novelty
of recommendations.
- Abstract(参考訳): 本稿では,ユーザがすでに持っているものと同様の人気を持つアイテムやタグに関心を持っているという仮定に基づく,新しいタグベースのレコメンダシステムpliersを提案する。
PLIERSは、アルゴリズムの複雑さと推奨項目のパーソナライズレベルとの良好なトレードオフを達成することを目的としている。
プライアーを評価するために,我々は実際のosnデータセットに関する一連の実験を行い,パーソナライゼーション,関連性,レコメンデーションのノベル性といった面で最先端のソリューションを上回ることを示した。
関連論文リスト
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
本稿では,従来のインタラクションからユーザフィードバックを学習する対話型パーソナライズドビジュアライゼーションレコメンデーション(PVisRec)システムを提案する。
よりインタラクティブで正確なレコメンデーションのために、PVisRec設定における文脈的半帯域であるHier-SUCBを提案する。
論文 参考訳(メタデータ) (2025-02-05T17:14:45Z) - Preference Discerning with LLM-Enhanced Generative Retrieval [28.309905847867178]
我々は、選好識別という新しいパラダイムを提案する。
嗜好判断において、我々は、そのコンテキスト内でのユーザの嗜好に対して、生成的シーケンシャルなレコメンデーションシステムを明示的に条件付けする。
ユーザレビューと項目固有データに基づいて,Large Language Models (LLMs) を用いてユーザ嗜好を生成する。
論文 参考訳(メタデータ) (2024-12-11T18:26:55Z) - How to Surprisingly Consider Recommendations? A Knowledge-Graph-based Approach Relying on Complex Network Metrics [0.2537383030441368]
本稿では,項目カタログ上のユーザインタラクションを符号化することで,知識グラフに基づくレコメンデーションシステムを提案する。
本研究は,ネットワークレベルのKG測定値が推薦のサプライズ度に影響を及ぼすかどうかを考察する。
我々は、LastFMリスニング履歴と合成Netflix視聴プロファイルの2つのデータセットに対するアプローチを実験的に評価した。
論文 参考訳(メタデータ) (2024-05-14T09:38:44Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
レビューベースのレコメンデータシステムは、この分野において重要なサブフィールドとして現れている。
本稿では,これらのシステムを分類し,その特徴,有効性,限界を解析し,最先端の手法を要約する。
本稿では,マルチモーダルデータの統合,複数基準評価情報の統合,倫理的考察など,今後の研究の方向性を提案する。
論文 参考訳(メタデータ) (2024-05-09T05:45:18Z) - How to Diversify any Personalized Recommender? [0.0]
精度を維持しつつTop-Nレコメンデーションの多様性を向上させるための新しいアプローチを提案する。
当社のアプローチでは,ユーザを幅広いコンテンツカテゴリやトピックに公開するための,ユーザ中心の事前処理戦略を採用しています。
トレーニングに事前処理されたデータを使用すると、元の未修正データでトレーニングされたデータと同等のパフォーマンスレベルを達成するためのレコメンデーションシステムになる。
論文 参考訳(メタデータ) (2024-05-03T15:02:55Z) - Impression-Aware Recommender Systems [53.48892326556546]
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
本稿では,印象型レコメンデーションシステムと,印象型レコメンデーションシステムという,パーソナライズされたレコメンデーションのための新しいパラダイムを論じる。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - FEBR: Expert-Based Recommendation Framework for beneficial and
personalized content [77.86290991564829]
推奨コンテンツの質を評価するための見習い学習フレームワークであるFEBR(Expert-Based Recommendation Framework)を提案する。
このフレームワークは、推奨評価環境において専門家(信頼できると仮定される)の実証された軌跡を利用して、未知のユーティリティ機能を回復する。
ユーザ関心シミュレーション環境(RecSim)によるソリューションの性能評価を行う。
論文 参考訳(メタデータ) (2021-07-17T18:21:31Z) - PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest [54.56236567783225]
PinnerSageはエンド・ツー・エンドのレコメンデーションシステムで、マルチモーダル・埋め込みを通じて各ユーザーを表現する。
オフラインおよびオンラインA/B実験を複数実施し,本手法が単一埋め込み法より有意に優れていることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:13:20Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z) - Sequential Recommender Systems: Challenges, Progress and Prospects [50.12218578518894]
シーケンシャルレコメンダシステム(SRS)は、シーケンシャルなユーザ行動、ユーザとアイテム間の相互作用、ユーザの好みとアイテムの人気の時間的変化を理解し、モデル化しようとする。
まず, SRSの特徴を概説し, 研究領域における課題をまとめ, 分類し, そして, 最新の研究成果と代表的研究成果から, 対応する研究の進展を概説する。
論文 参考訳(メタデータ) (2019-12-28T05:12:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。