Non-Hermitian Parent Hamiltonian from Generalized Quantum Covariance
Matrix
- URL: http://arxiv.org/abs/2307.03107v1
- Date: Thu, 6 Jul 2023 16:27:22 GMT
- Title: Non-Hermitian Parent Hamiltonian from Generalized Quantum Covariance
Matrix
- Authors: Yin Tang, W. Zhu
- Abstract summary: We provide a systematical and efficient way to construct non-Hermitian Hamiltonian from a single pair of biorthogonal eigenstates.
Our work sheds light on future exploration on non-Hermitian physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum inverse problem is defined as how to determine a local Hamiltonian
from a single eigenstate? This question is valid not only in Hermitian system
but also in non-Hermitian system. So far, most attempts are limited to
Hermitian systems, while the possible non-Hermitian solution remains
outstanding. In this work, we generalize the quantum covariance matrix method
to the cases that are applicable to non-Hermitian systems, through which we are
able to explicitly reconstruct the non-Hermitian parent Hamiltonian from an
arbitrary pair of biorthogonal eigenstates. As concrete examples, we
successfully apply our approach in spin chain with Lee-Yang singularity and a
non-Hermitian interacting fermion model. Some generalization and further
application of our approach are also discussed. Our work provides a
systematical and efficient way to construct non-Hermitian Hamiltonian from a
single pair of biorthogonal eigenstates and shed light on future exploration on
non-Hermitian physics.
Related papers
- Determining non-Hermitian parent Hamiltonian from a single eigenstate [0.0]
We show that it can be sufficient to determine a non-Hermitian Hamiltonian from a single right or left eigenstate.
Our scheme favours non-Hermitian Hamiltonian learning on experimental quantum systems.
arXiv Detail & Related papers (2024-08-28T13:23:47Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Construction of Non-Hermitian Parent Hamiltonian from Matrix Product
States [23.215516392012184]
We propose a new method to construct non-Hermitian many-body systems by generalizing the parent Hamiltonian method into non-Hermitian regimes.
We demonstrate this method by constructing a non-Hermitian spin-$1$ model from the asymmetric Affleck-Kennedy-Lieb-Tasaki state.
arXiv Detail & Related papers (2023-01-29T14:13:55Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Variational Matrix Product State Approach for Non-Hermitian System Based
on a Companion Hermitian Hamiltonian [15.165363050850857]
We propose an algorithm for solving the ground state of a non-Hermitian system in the matrix product state (MPS) formalism.
If the eigenvalues of the non-Hermitian system are known, the companion Hermitian Hamiltonian can be directly constructed and solved.
arXiv Detail & Related papers (2022-10-26T17:00:28Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Flattening the Curve with Einstein's Quantum Elevator: Hermitization of
Non-Hermitian Hamiltonians via a Generalized Vielbein Formalism [0.0]
We present a systematic study of the vielbein-like formalism which transforms the Hilbert space bundles of non-Hermitian systems into the conventional ones.
In other words, any non-Hermitian Hamiltonian can be "transformed" into a Hermitian one without altering the physics.
arXiv Detail & Related papers (2021-07-25T23:23:47Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.