論文の概要: ChatGPT is not a pocket calculator -- Problems of AI-chatbots for
teaching Geography
- arxiv url: http://arxiv.org/abs/2307.03196v1
- Date: Mon, 3 Jul 2023 15:35:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-16 04:13:49.016593
- Title: ChatGPT is not a pocket calculator -- Problems of AI-chatbots for
teaching Geography
- Title(参考訳): ChatGPTはポケット電卓ではない -- 地理学を教えるAIボットの問題点
- Authors: Simon Scheider, Harm Bartholomeus, Judith Verstegen
- Abstract要約: ChatGPTは、評価の妥当性を脅かすため、不正である可能性がある。
地理とGIScienceの質問に回答する際のChatGPTの質に関する予備調査に基づいて,この仮定がかなり単純であることを実証した。
- 参考スコア(独自算出の注目度): 0.11049608786515837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent success of large language models and AI chatbots such as ChatGPT
in various knowledge domains has a severe impact on teaching and learning
Geography and GIScience. The underlying revolution is often compared to the
introduction of pocket calculators, suggesting analogous adaptations that
prioritize higher-level skills over other learning content. However, using
ChatGPT can be fraudulent because it threatens the validity of assessments. The
success of such a strategy therefore rests on the assumption that lower-level
learning goals are substitutable by AI, and supervision and assessments can be
refocused on higher-level goals. Based on a preliminary survey on ChatGPT's
quality in answering questions in Geography and GIScience, we demonstrate that
this assumption might be fairly naive, and effective control in assessments and
supervision is required.
- Abstract(参考訳): 様々な知識領域におけるChatGPTのような大規模言語モデルやAIチャットボットの成功は、地理学とGIScienceの教育と学習に大きな影響を与えている。
基礎となる革命はしばしばポケット電卓の導入と比較され、他の学習コンテンツよりも高いレベルのスキルを優先する類似の適応を示唆している。
しかし、ChatGPTの使用は、評価の妥当性を脅かすため、不正である可能性がある。
このような戦略の成功は、低レベルの学習目標がAIによって置換可能であり、監督と評価は高レベルの目標に再焦点を絞ることができるという仮定にかかっている。
図学とGIScienceにおける質問への回答におけるChatGPTの質に関する予備調査に基づいて、この仮定がかなり単純であり、評価と監督の効果的な制御が必要であることを実証する。
関連論文リスト
- Benchmarking ChatGPT on Algorithmic Reasoning [58.50071292008407]
GNN向けに設計されたCLRSベンチマークスイートからChatGPTのアルゴリズム問題を解く能力を評価する。
ChatGPTは、Pythonを使ってこれらの問題を解決することで、専門家のGNNモデルより優れています。
論文 参考訳(メタデータ) (2024-04-04T13:39:06Z) - Using ChatGPT for Science Learning: A Study on Pre-service Teachers'
Lesson Planning [0.7416846035207727]
本研究は,韓国の大学教員29名による授業計画について分析した。
授業計画では14種類の指導・学習方法・戦略が同定された。
本研究は,授業計画におけるChatGPTの適切な使用例と不適切な使用例の両方を同定した。
論文 参考訳(メタデータ) (2024-01-18T22:52:04Z) - Student Mastery or AI Deception? Analyzing ChatGPT's Assessment
Proficiency and Evaluating Detection Strategies [1.633179643849375]
ChatGPTのような生成AIシステムは、学習と評価に破壊的な影響を及ぼす。
本研究では,ChatGPTを3つのコースに分けて評価することで,ChatGPTの性能を評価する。
論文 参考訳(メタデータ) (2023-11-27T20:10:13Z) - Transformative Effects of ChatGPT on Modern Education: Emerging Era of
AI Chatbots [36.760677949631514]
ChatGPTは、大量のデータの分析に基づいて、一貫性と有用な応答を提供するためにリリースされた。
予備評価の結果,ChatGPTは財務,コーディング,数学など各分野において異なる性能を示した。
不正確なデータや偽データを生成する可能性など、その使用には明らかな欠点がある。
ChatGPTを教育のツールとして使用すれば、学術的規制と評価のプラクティスを更新する必要がある。
論文 参考訳(メタデータ) (2023-05-25T17:35:57Z) - ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about [15.19126287569545]
本研究では,異なる対話型QAコーパスからChatGPTが生成する応答について検討する。
この研究はBERT類似度スコアを用いて、これらの回答を正しい回答と比較し、自然言語推論(NLI)ラベルを得る。
調査では、ChatGPTが質問に対する誤った回答を提供し、モデルがエラーを起こしやすい領域について洞察を与えている事例を特定した。
論文 参考訳(メタデータ) (2023-04-06T18:42:47Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models [49.52083248451775]
大規模言語モデル(LLM)はNLPに大きな進歩をもたらした。
特にChatGPTは,広く利用されており,アクセスしやすいLLMである。
我々は、ChatGPTの常識能力を評価するために、11のデータセットで一連の実験を行った。
論文 参考訳(メタデータ) (2023-03-29T03:05:43Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Learning gain differences between ChatGPT and human tutor generated
algebra hints [4.438259529250529]
本研究は,ChatGPTの学習成績評価を行い,そのヒントの有効性と教師によるヒントとを比較した。
その結果,ChatGPTが生成したヒントの70%が手作業による品質チェックに合格し,人間とChatGPTの条件が正の学習効果をもたらすことがわかった。
論文 参考訳(メタデータ) (2023-02-14T07:20:48Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。