論文の概要: Region-Wise Attentive Multi-View Representation Learning for Urban
Region Embeddings
- arxiv url: http://arxiv.org/abs/2307.03212v1
- Date: Thu, 6 Jul 2023 16:38:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 14:29:03.331263
- Title: Region-Wise Attentive Multi-View Representation Learning for Urban
Region Embeddings
- Title(参考訳): 都市部埋め込みのための地域意識多視点表現学習
- Authors: Weiliang Chan and Qianqian Ren
- Abstract要約: 本稿では,多視点依存を捉えるための領域ワイズ多視点表現学習(ROMER)を提案する。
本モデルは,マルチソース都市データから都市域の表現を学習することに焦点を当てる。
我々のモデルは最先端の手法を最大17%改善する。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban region embedding is an important and yet highly challenging issue due
to the complexity and constantly changing nature of urban data. To address the
challenges, we propose a Region-Wise Multi-View Representation Learning (ROMER)
to capture multi-view dependencies and learn expressive representations of
urban regions without the constraints of rigid neighbourhood region conditions.
Our model focus on learn urban region representation from multi-source urban
data. First, we capture the multi-view correlations from mobility flow
patterns, POI semantics and check-in dynamics. Then, we adopt global graph
attention networks to learn similarity of any two vertices in graphs. To
comprehensively consider and share features of multiple views, a two-stage
fusion module is further proposed to learn weights with external attention to
fuse multi-view embeddings. Extensive experiments for two downstream tasks on
real-world datasets demonstrate that our model outperforms state-of-the-art
methods by up to 17\% improvement.
- Abstract(参考訳): 都市領域の埋め込みは、複雑さと都市データの性質が絶えず変化するため、重要かつ非常に困難な問題である。
この課題に対処するため,我々は,都市域の多視点依存を捉えるための領域ワイズ多視点表現学習(ROMER)を提案し,厳密な地域条件の制約を伴わずに都市域の表現表現を学習する。
本モデルでは,多元都市データから都市域表現を学ぶことに注力する。
まず,モビリティフローパターン,poiセマンティクス,チェックインダイナミクスから多視点相関を捉える。
次に,グラフ内の2つの頂点の類似性を学習するために,グローバルグラフアテンションネットワークを採用する。
複数ビューの特徴を包括的に検討し共有するために,2段階の融合モジュールを提案し,外部の注意を払って重みを学習し,多視点埋め込みを実現する。
実世界のデータセット上での2つの下流タスクに対する大規模な実験により、我々のモデルは最先端の手法を最大17倍改善することを示した。
関連論文リスト
- Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
通勤フロー予測は、現実の自治体の業務に欠かせない課題である。
我々は,異なるタイプのODフローを予測するために,意味のある領域埋め込みを生成するヘテロジニアスグラフベースモデルを開発した。
提案モデルでは,一様都市構造の観点から既存モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-27T03:30:01Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridgeは、コンテキストテキスト情報を活用することで、ローカルおよびグローバルな視点をブリッジするフレームワークである。
提案手法は最先端性能を実現し,グラフ対応トークン削減モジュールは効率を大幅に向上し,スケーラビリティの問題を解消する。
論文 参考訳(メタデータ) (2024-06-18T13:35:25Z) - Fine-Grained Urban Flow Inference with Multi-scale Representation Learning [14.673004628911443]
そこで本稿では,UrbanMSRと呼ばれる都市流モデルを提案する。
自己教師付きコントラスト学習を用いて、近隣レベルと都市レベルの地理的情報の動的マルチスケール表現を得る。
実世界の3つのデータセットに対する広範な実験により,その性能を検証した。
論文 参考訳(メタデータ) (2024-06-14T04:42:29Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
グラフ学習の文脈における分布変化に対処する最新のアプローチ、戦略、洞察のレビューと要約を提供する。
既存のグラフ学習手法を,グラフ領域適応学習,グラフ配布学習,グラフ連続学習など,いくつかの重要なシナリオに分類する。
本稿では,この領域における現状を体系的に分析し,分散シフト下でのグラフ学習の可能性と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-02-26T07:52:40Z) - Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation [19.419836274690816]
効率的な自己教師型学習を実現するための空間時空間グラフ学習モデル(GraphST)を提案する。
提案手法は, 重要な多視点自己教師情報の蒸留を自動化する, 対向的コントラスト学習パラダイムである。
実生活データセット上での様々な時空間予測タスクにおいて,提案手法の優位性を示す。
論文 参考訳(メタデータ) (2023-06-19T03:09:35Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
場所間の時間的関係を見つけることは、動的なオフライン広告やスマートな公共交通計画など、多くの都市アプリケーションに役立つ。
空間的に進化するグラフニューラルネットワーク(SEENet)を含むグラフ学習方式によるTrialの解を提案する。
SEConvは時間内アグリゲーションと時間間伝搬を実行し、位置メッセージパッシングの観点から、多面的に空間的に進化するコンテキストをキャプチャする。
SE-SSLは、位置表現学習を強化し、関係の空間性をさらに扱えるように、グローバルな方法でタイムアウェアな自己教師型学習タスクを設計する。
論文 参考訳(メタデータ) (2023-06-15T07:48:32Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
本研究では,都市域のプロファイリングのための多グラフ代表学習フレームワークであるRerea2Vecを提案する。
実世界のデータセットの実験によると、Rerea2Vecは3つのアプリケーションで使用でき、最先端のベースラインをすべて上回っている。
論文 参考訳(メタデータ) (2022-02-04T11:05:37Z) - Multi-Graph Fusion Networks for Urban Region Embedding [40.97361959702485]
ヒトの移動データから都市部の埋め込みを学習することで、地域の機能を明らかにすることができ、犯罪予測のような相関性はあるものの異なるタスクを可能にする。
クロスドメイン予測タスクを実現するために,MGFN(Multi-graph fusion Network)を提案する。
実験の結果、提案されたMGFNは最先端の手法よりも最大12.35%優れていた。
論文 参考訳(メタデータ) (2022-01-24T15:48:50Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
グラフ上での自己教師型学習をコントラッシブ手法を用いて研究する。
複数の部分空間におけるグラフの対比により、グラフエンコーダはより豊富な特徴を捉えることができる。
論文 参考訳(メタデータ) (2021-07-20T22:09:21Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。