Quantification of Uncertainty with Adversarial Models
- URL: http://arxiv.org/abs/2307.03217v2
- Date: Tue, 24 Oct 2023 16:37:43 GMT
- Title: Quantification of Uncertainty with Adversarial Models
- Authors: Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, G\"unter
Klambauer, Sepp Hochreiter
- Abstract summary: Quantifying uncertainty is important for actionable predictions in real-world applications.
We suggest Quantification of Uncertainty with Adversarial Models (QUAM)
QUAM identifies regions where the whole product under the integral is large, not just the posterior.
- Score: 6.772632213236167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying uncertainty is important for actionable predictions in real-world
applications. A crucial part of predictive uncertainty quantification is the
estimation of epistemic uncertainty, which is defined as an integral of the
product between a divergence function and the posterior. Current methods such
as Deep Ensembles or MC dropout underperform at estimating the epistemic
uncertainty, since they primarily consider the posterior when sampling models.
We suggest Quantification of Uncertainty with Adversarial Models (QUAM) to
better estimate the epistemic uncertainty. QUAM identifies regions where the
whole product under the integral is large, not just the posterior.
Consequently, QUAM has lower approximation error of the epistemic uncertainty
compared to previous methods. Models for which the product is large correspond
to adversarial models (not adversarial examples!). Adversarial models have both
a high posterior as well as a high divergence between their predictions and
that of a reference model. Our experiments show that QUAM excels in capturing
epistemic uncertainty for deep learning models and outperforms previous methods
on challenging tasks in the vision domain.
Related papers
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
Uncertainty estimations for machine learning interatomic potentials are crucial to quantify the additional model error they introduce.
We consider GPR models with Coulomb and SOAP representations as inputs to predict potential energy surfaces and excitation energies of molecules.
We evaluate, how the GPR variance and ensemble-based uncertainties relate to the error and whether model performance improves by selecting the most uncertain samples from a fixed configuration space.
arXiv Detail & Related papers (2024-10-27T10:06:09Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution.
We introduce a theoretically grounded measure to overcome these limitations.
We find that our introduced measure behaves more reasonably in controlled synthetic tasks.
arXiv Detail & Related papers (2023-11-14T16:55:12Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
We focus on characterizing the variance over values induced by a distribution over MDPs.
Previous work upper bounds the posterior variance over values by solving a so-called uncertainty Bellman equation.
We propose a new uncertainty Bellman equation whose solution converges to the true posterior variance over values.
arXiv Detail & Related papers (2023-02-24T09:18:27Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
We study the effect of the model choice on uncertainty estimation.
We highlight that under model misspecification, aleatoric uncertainty is not properly captured.
arXiv Detail & Related papers (2021-11-23T10:18:41Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
We show how the concept of Errors-in-Variables can be used in Bayesian deep regression.
We discuss the approach along various simulated and real examples.
arXiv Detail & Related papers (2021-05-19T12:37:02Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.