Large Language Models as Batteries-Included Zero-Shot ESCO Skills
Matchers
- URL: http://arxiv.org/abs/2307.03539v1
- Date: Fri, 7 Jul 2023 12:04:12 GMT
- Title: Large Language Models as Batteries-Included Zero-Shot ESCO Skills
Matchers
- Authors: Benjamin Clavi\'e and Guillaume Souli\'e
- Abstract summary: We propose an end-to-end zero-shot system for skills extraction from job descriptions based on large language models (LLMs)
We generate synthetic training data for the entirety of ESCO skills and train a classifier to extract skill mentions from job posts.
We also employ a similarity retriever to generate skill candidates which are then re-ranked using a second LLM.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding labour market dynamics requires accurately identifying the
skills required for and possessed by the workforce. Automation techniques are
increasingly being developed to support this effort. However, automatically
extracting skills from job postings is challenging due to the vast number of
existing skills. The ESCO (European Skills, Competences, Qualifications and
Occupations) framework provides a useful reference, listing over 13,000
individual skills. However, skills extraction remains difficult and accurately
matching job posts to the ESCO taxonomy is an open problem. In this work, we
propose an end-to-end zero-shot system for skills extraction from job
descriptions based on large language models (LLMs). We generate synthetic
training data for the entirety of ESCO skills and train a classifier to extract
skill mentions from job posts. We also employ a similarity retriever to
generate skill candidates which are then re-ranked using a second LLM. Using
synthetic data achieves an RP@10 score 10 points higher than previous distant
supervision approaches. Adding GPT-4 re-ranking improves RP@10 by over 22
points over previous methods. We also show that Framing the task as mock
programming when prompting the LLM can lead to better performance than natural
language prompts, especially with weaker LLMs. We demonstrate the potential of
integrating large language models at both ends of skills matching pipelines.
Our approach requires no human annotations and achieve extremely promising
results on skills extraction against ESCO.
Related papers
- Comparative Analysis of Encoder-Based NER and Large Language Models for Skill Extraction from Russian Job Vacancies [0.0]
This study compares Named Entity Recognition methods based on encoders with Large Language Models (LLMs) for extracting skills from Russian job vacancies.
Results indicate that traditional NER models, especially DeepPavlov RuBERT NER tuned, outperform LLMs across various metrics including accuracy, precision, recall, and inference time.
This research contributes to the field of natural language processing (NLP) and its application in the labor market, particularly in non-English contexts.
arXiv Detail & Related papers (2024-07-29T09:08:40Z) - Agentic Skill Discovery [19.5703917813767]
Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models (LLMs) to low-level robotic control.
A remaining challenge is to acquire a diverse set of fundamental skills.
We introduce a novel framework for skill discovery that is entirely driven by LLMs.
arXiv Detail & Related papers (2024-05-23T19:44:03Z) - Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts [58.220879689376744]
Reinforcement learning (RL) is a powerful approach for acquiring a good-performing policy.
We propose textbfDiverse textbfSkill textbfLearning (Di-SkilL) for learning diverse skills.
We show on challenging robot simulation tasks that Di-SkilL can learn diverse and performant skills.
arXiv Detail & Related papers (2024-03-11T17:49:18Z) - Rethinking Skill Extraction in the Job Market Domain using Large
Language Models [20.256353240384133]
Skill Extraction involves identifying skills and qualifications mentioned in documents such as job postings and resumes.
The reliance on manually annotated data limits the generalizability of such approaches.
In this paper, we explore the use of in-context learning to overcome these challenges.
arXiv Detail & Related papers (2024-02-06T09:23:26Z) - NNOSE: Nearest Neighbor Occupational Skill Extraction [55.22292957778972]
We tackle the complexity in occupational skill datasets.
We employ an external datastore for retrieving similar skills in a dataset-unifying manner.
We observe a performance gain in predicting infrequent patterns, with substantial gains of up to 30% span-F1 in cross-dataset settings.
arXiv Detail & Related papers (2024-01-30T15:18:29Z) - Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models [50.11814354654953]
Key ability of an AI agent is to flexibly combine, as needed, the basic skills it has learned.
This work introduces Skill-Mix, a new evaluation to measure ability to combine skills.
arXiv Detail & Related papers (2023-10-26T16:55:05Z) - Extreme Multi-Label Skill Extraction Training using Large Language
Models [19.095612333241288]
We describe a cost-effective approach to generate an accurate, fully synthetic labeled dataset for skill extraction.
Our results show a consistent increase of between 15 to 25 percentage points in textitR-Precision@5 compared to previously published results.
arXiv Detail & Related papers (2023-07-20T11:29:15Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
We present a comprehensive review of Knowledge Enhanced Pre-trained Language Models (KE-PLMs)
For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG) and rule knowledge.
The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods.
arXiv Detail & Related papers (2022-11-11T04:29:02Z) - Design of Negative Sampling Strategies for Distantly Supervised Skill
Extraction [19.43668931500507]
We propose an end-to-end system for skill extraction, based on distant supervision through literal matching.
We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements.
We release the benchmark dataset for research purposes to stimulate further research on the task.
arXiv Detail & Related papers (2022-09-13T13:37:06Z) - Example-Driven Model-Based Reinforcement Learning for Solving
Long-Horizon Visuomotor Tasks [85.56153200251713]
We introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks.
On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate.
arXiv Detail & Related papers (2021-09-21T16:48:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.