Comparative Analysis of Encoder-Based NER and Large Language Models for Skill Extraction from Russian Job Vacancies
- URL: http://arxiv.org/abs/2407.19816v2
- Date: Sun, 15 Sep 2024 05:02:37 GMT
- Title: Comparative Analysis of Encoder-Based NER and Large Language Models for Skill Extraction from Russian Job Vacancies
- Authors: Nikita Matkin, Aleksei Smirnov, Mikhail Usanin, Egor Ivanov, Kirill Sobyanin, Sofiia Paklina, Petr Parshakov,
- Abstract summary: This study compares Named Entity Recognition methods based on encoders with Large Language Models (LLMs) for extracting skills from Russian job vacancies.
Results indicate that traditional NER models, especially DeepPavlov RuBERT NER tuned, outperform LLMs across various metrics including accuracy, precision, recall, and inference time.
This research contributes to the field of natural language processing (NLP) and its application in the labor market, particularly in non-English contexts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The labor market is undergoing rapid changes, with increasing demands on job seekers and a surge in job openings. Identifying essential skills and competencies from job descriptions is challenging due to varying employer requirements and the omission of key skills. This study addresses these challenges by comparing traditional Named Entity Recognition (NER) methods based on encoders with Large Language Models (LLMs) for extracting skills from Russian job vacancies. Using a labeled dataset of 4,000 job vacancies for training and 1,472 for testing, the performance of both approaches is evaluated. Results indicate that traditional NER models, especially DeepPavlov RuBERT NER tuned, outperform LLMs across various metrics including accuracy, precision, recall, and inference time. The findings suggest that traditional NER models provide more effective and efficient solutions for skill extraction, enhancing job requirement clarity and aiding job seekers in aligning their qualifications with employer expectations. This research contributes to the field of natural language processing (NLP) and its application in the labor market, particularly in non-English contexts.
Related papers
- Joint Extraction and Classification of Danish Competences for Job Matching [13.364545674944825]
This work presents the first model that jointly extracts and classifies competence from Danish job postings.
As a single BERT-like architecture for joint extraction and classification, our model is lightweight and efficient at inference.
arXiv Detail & Related papers (2024-10-29T15:00:40Z) - Skill-LLM: Repurposing General-Purpose LLMs for Skill Extraction [2.5069344340760717]
We propose fine-tuning a specialized Skill-LLM and a light weight model to improve the precision and quality of skill extraction.
Our results show that this approach outperforms existing SOTA techniques.
arXiv Detail & Related papers (2024-10-15T20:41:18Z) - Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
This paper explores the feasibility of employing smaller, domain-specific encoder LMs alongside prompting techniques to enhance performance in specialized contexts.
Our study concentrates on the Italian bureaucratic and legal language, experimenting with both general-purpose and further pre-trained encoder-only models.
The results indicate that while further pre-trained models may show diminished robustness in general knowledge, they exhibit superior adaptability for domain-specific tasks, even in a zero-shot setting.
arXiv Detail & Related papers (2024-07-30T08:50:16Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
We introduce the Experiential Learning (ExpeL) agent to allow learning from agent experiences without requiring parametric updates.
Our agent autonomously gathers experiences and extracts knowledge using natural language from a collection of training tasks.
At inference, the agent recalls its extracted insights and past experiences to make informed decisions.
arXiv Detail & Related papers (2023-08-20T03:03:34Z) - Large Language Models as Batteries-Included Zero-Shot ESCO Skills
Matchers [0.0]
We propose an end-to-end zero-shot system for skills extraction from job descriptions based on large language models (LLMs)
We generate synthetic training data for the entirety of ESCO skills and train a classifier to extract skill mentions from job posts.
We also employ a similarity retriever to generate skill candidates which are then re-ranked using a second LLM.
arXiv Detail & Related papers (2023-07-07T12:04:12Z) - Commonsense Knowledge Transfer for Pre-trained Language Models [83.01121484432801]
We introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model.
It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model.
It then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction.
arXiv Detail & Related papers (2023-06-04T15:44:51Z) - Skill-Based Few-Shot Selection for In-Context Learning [123.26522773708683]
Skill-KNN is a skill-based few-shot selection method for in-context learning.
It does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks.
Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.
arXiv Detail & Related papers (2023-05-23T16:28:29Z) - A practical method for occupational skills detection in Vietnamese job
listings [0.16114012813668932]
Lack of accurate and timely labor market information leads to skill miss-matches.
Traditional approaches rely on existing taxonomy and/or large annotated data.
We propose a practical methodology for skill detection in Vietnamese job listings.
arXiv Detail & Related papers (2022-10-26T10:23:18Z) - "FIJO": a French Insurance Soft Skill Detection Dataset [0.0]
This article proposes a new public dataset, FIJO, containing insurance job offers, including many soft skill annotations.
We present the results of skill detection algorithms using a named entity recognition approach and show that transformers-based models have good token-wise performances on this dataset.
arXiv Detail & Related papers (2022-04-11T15:54:22Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
Cross-lingual NER transfers knowledge from rich-resource language to languages with low resources.
Existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages.
We develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning.
arXiv Detail & Related papers (2021-06-01T05:46:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.