論文の概要: Leveraging text data for causal inference using electronic health
records
- arxiv url: http://arxiv.org/abs/2307.03687v1
- Date: Fri, 9 Jun 2023 16:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-16 04:15:42.570204
- Title: Leveraging text data for causal inference using electronic health
records
- Title(参考訳): 電子健康記録を用いた因果推論におけるテキストデータ活用
- Authors: Reagan Mozer, Aaron R. Kaufman, Leo A. Celi, and Luke Miratrix
- Abstract要約: 電子健康データを用いて因果推論を支援するためにテキストデータをどのように利用できるかを示す。
我々は、因果推論のためのマッチングを用いた研究に焦点をあてる。
臨床データの二次分析の範囲を、量的データが質の悪い領域や存在しない領域にまで広げたい。
- 参考スコア(独自算出の注目度): 2.4374097382908477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text is a ubiquitous component of medical data, containing valuable
information about patient characteristics and care that are often missing from
structured chart data. Despite this richness, it is rarely used in clinical
research, owing partly to its complexity. Using a large database of patient
records and treatment histories accompanied by extensive notes by attendant
physicians and nurses, we show how text data can be used to support causal
inference with electronic health data in all stages, from conception and design
to analysis and interpretation, with minimal additional effort. We focus on
studies using matching for causal inference. We augment a classic matching
analysis by incorporating text in three ways: by using text to supplement a
multiple imputation procedure, we improve the fidelity of imputed values to
handle missing data; by incorporating text in the matching stage, we strengthen
the plausibility of the matching procedure; and by conditioning on text, we can
estimate easily interpretable text-based heterogeneous treatment effects that
may be stronger than those found across categories of structured covariates.
Using these techniques, we hope to expand the scope of secondary analysis of
clinical data to domains where quantitative data is of poor quality or
nonexistent, but where text is available, such as in developing countries.
- Abstract(参考訳): テキストは医療データのユビキタスな構成要素であり、構造化されたチャートデータからしばしば欠落する患者の特徴やケアに関する貴重な情報を含んでいる。
この豊かさにもかかわらず、その複雑さのために臨床研究ではほとんど使われない。
主治医や看護師の膨大なメモを伴う患者の記録や治療履歴の大規模なデータベースを用いて,概念や設計から分析,解釈まで,あらゆる段階において,電子健康データを用いた因果推論にテキストデータをどのように活用できるかを,最小限の努力で示す。
因果推論にマッチングを用いた研究に注目する。
従来のマッチング分析では,複数のインプテーション手続きを補足するためにテキストを用いることで,不定値の忠実性を改善し,マッチング段階にテキストを組み込むことでマッチング手順の信頼性を高め,テキストの条件づけにより,構造的共変数のカテゴリで見られるものよりも強力なテキストベースの不均質な処理効果を容易に推定できる。
これらの技術を用いて, 臨床データの二次分析の範囲を, 品質の悪い領域や存在しない領域に拡大し, 途上国などテキストが利用可能な領域に拡大したい。
関連論文リスト
- Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Preserving the knowledge of long clinical texts using aggregated
ensembles of large language models [0.0]
臨床テキストには、様々な臨床結果予測タスクに使用できる、豊富で価値のある情報が含まれている。
BERTベースのモデルのような大きな言語モデルを臨床テキストに適用することは、2つの大きな課題をもたらす。
本稿では,大規模言語モデルの集合アンサンブルを用いて,長期臨床テキストの知識を保存するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T19:50:02Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Leveraging Foundation Models for Clinical Text Analysis [0.0]
感染症は世界中の公衆衛生上重要な問題である。
利用可能な膨大な臨床データから情報抽出の課題が浮かび上がっている。
本研究では,タスク固有データに微調整された事前学習型トランスフォーマーモデルを用いた自然言語処理(NLP)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-20T17:05:13Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Towards Assessing Data Bias in Clinical Trials [0.0]
医療データセットはデータバイアスの影響を受けます。
データバイアスは現実の歪んだ見方を与え、誤った分析結果をもたらし、結果として決定を下す。
i)データセットに存在する可能性のあるデータバイアスの種類を定義し、(ii)適切なメトリクスでデータバイアスを特徴付け、定量化し、(iii)異なるデータソースに対してデータバイアスを特定し、測定し、緩和するためのガイドラインを提供する。
論文 参考訳(メタデータ) (2022-12-19T17:10:06Z) - sEHR-CE: Language modelling of structured EHR data for efficient and
generalizable patient cohort expansion [0.0]
sEHR-CEは、異種臨床データセットの統合表現型化と分析を可能にするトランスフォーマーに基づく新しいフレームワークである。
大規模研究である英国バイオバンクのプライマリ・セカンダリ・ケアデータを用いてアプローチを検証する。
論文 参考訳(メタデータ) (2022-11-30T16:00:43Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Knowledge-guided Text Structuring in Clinical Trials [0.38073142980733]
本稿では,知識ベースを自動生成する知識誘導型テキスト構造化フレームワークを提案する。
実験結果から,本手法は全体の高精度化とリコールが可能であることが示唆された。
論文 参考訳(メタデータ) (2019-12-28T01:12:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。