論文の概要: Improving Automatic Quotation Attribution in Literary Novels
- arxiv url: http://arxiv.org/abs/2307.03734v1
- Date: Fri, 7 Jul 2023 17:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 11:41:05.344862
- Title: Improving Automatic Quotation Attribution in Literary Novels
- Title(参考訳): 文学小説における自動引用属性の改善
- Authors: Krishnapriya Vishnubhotla, Frank Rudzicz, Graeme Hirst, Adam Hammond
- Abstract要約: 文学小説における引用帰属の現在のモデルでは、トレーニングやテストデータに利用可能な情報のレベルが異なると仮定している。
文芸小説における注釈付きコア推論と引用の膨大なデータセットを用いて、各サブタスクの最先端モデルを個別にベンチマークする。
また、話者帰属タスクのモデルの評価を行い、簡単な逐次予測モデルが最先端のモデルと同等の精度のスコアを得ることを示す。
- 参考スコア(独自算出の注目度): 21.164701493247794
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current models for quotation attribution in literary novels assume varying
levels of available information in their training and test data, which poses a
challenge for in-the-wild inference. Here, we approach quotation attribution as
a set of four interconnected sub-tasks: character identification, coreference
resolution, quotation identification, and speaker attribution. We benchmark
state-of-the-art models on each of these sub-tasks independently, using a large
dataset of annotated coreferences and quotations in literary novels (the
Project Dialogism Novel Corpus). We also train and evaluate models for the
speaker attribution task in particular, showing that a simple sequential
prediction model achieves accuracy scores on par with state-of-the-art models.
- Abstract(参考訳): 文学小説における引用帰属の現在のモデルは、トレーニングとテストデータにおいて利用可能な情報の様々なレベルを前提としている。
ここでは,文字識別,コリファレンス解像度,引用識別,話者帰属という4つのサブタスクの組として,引用帰属にアプローチする。
我々は,各サブタスクの最先端モデルを,文学小説(プロジェクト・ダイアログ・ノベル・コーパス)の注釈付きコア推論と引用の膨大なデータセットを用いて,個別にベンチマークする。
また,話者帰属課題に対するモデルの訓練と評価を行い,単純な逐次予測モデルが最先端モデルと同等の精度スコアが得られることを示す。
関連論文リスト
- Manual Verbalizer Enrichment for Few-Shot Text Classification [1.860409237919611]
acrshortmaveは、クラスラベルの豊か化による動詞化のためのアプローチである。
本モデルでは, 資源を著しく減らしながら, 最先端の成果が得られている。
論文 参考訳(メタデータ) (2024-10-08T16:16:47Z) - Identifying Speakers and Addressees of Quotations in Novels with Prompt Learning [5.691280935924612]
そこで本研究では,微調整事前学習モデルに基づく話者とアドレナ識別のための学習手法を提案する。
中国語と英語の両方のデータセットを用いた実験は,提案手法の有効性を示した。
論文 参考訳(メタデータ) (2024-08-18T12:19:18Z) - Integrating Self-supervised Speech Model with Pseudo Word-level Targets
from Visually-grounded Speech Model [57.78191634042409]
擬似単語レベルのターゲットを学習プロセスに統合するフレームワークであるPseudo-Word HuBERT(PW-HuBERT)を提案する。
4つの音声言語理解(SLU)ベンチマークによる実験結果から,意味情報の収集におけるモデルの有用性が示唆された。
論文 参考訳(メタデータ) (2024-02-08T16:55:21Z) - Distinguishing Fictional Voices: a Study of Authorship Verification
Models for Quotation Attribution [12.300285585201767]
既訓練のオーサシップ検証モデルを用いて,引用文を符号化して構築した文字のスタイリスティックな表現について検討する。
以上の結果から,これらのモデルの一部で捉えたスタイリスティックな情報とトピック的な情報の組み合わせは,文字を正確に区別するが,引用の帰属時に意味のみのモデルよりも必ずしも改善されないことが示唆された。
論文 参考訳(メタデータ) (2024-01-30T12:49:40Z) - Self-Supervised Representation Learning for Online Handwriting Text
Classification [0.8594140167290099]
本稿では,日本語と中国語の個人によるオンライン筆跡から情報表現を抽出するための事前学習の前提として,新しいストロークマスキング(POSM)を提案する。
抽出した表現の質を評価するために,本質的評価法と外生的評価法の両方を用いる。
事前訓練されたモデルは、作家の識別、性別分類、手書きの分類といったタスクにおいて、最先端の結果を達成するために微調整される。
論文 参考訳(メタデータ) (2023-10-10T14:07:49Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification [65.51149771074944]
MetricPromptは、数発のテキスト分類タスクをテキストペア関連性推定タスクに書き換えることで、言語設計の難易度を緩和する。
広範に使われている3つのテキスト分類データセットを4つのショット・セッティングで実験する。
結果から,MetricPromptは,手動弁証法や自動弁証法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-15T06:51:35Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
音声言語理解(SLU)タスクは、音声研究コミュニティで何十年にもわたって研究されてきた。
SLUタスクベンチマークはそれほど多くはなく、既存のベンチマークの多くは、すべての研究者が自由に利用できないデータを使っている。
最近の研究は、いくつかのタスクにそのようなベンチマークを導入し始めている。
論文 参考訳(メタデータ) (2022-12-20T18:39:59Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
そこで本研究では,定位分類のモデルとして,原文から銀ラベルでデータを抽出し,微調整する手法を提案する。
また,様々な段階において微調整に用いるデータのノイズレベルが減少する3段階のトレーニングフレームワークを提案する。
NLPCC 2021共有タスクArgumentative Text Understanding for AI Debaterでは,26の競合チームの中で1位にランクインした。
論文 参考訳(メタデータ) (2022-04-27T04:24:35Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。