論文の概要: Distinguishing Fictional Voices: a Study of Authorship Verification
Models for Quotation Attribution
- arxiv url: http://arxiv.org/abs/2401.16968v1
- Date: Tue, 30 Jan 2024 12:49:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 15:05:52.114808
- Title: Distinguishing Fictional Voices: a Study of Authorship Verification
Models for Quotation Attribution
- Title(参考訳): 架空の声の識別:引用帰属のための著者性検証モデルの研究
- Authors: Gaspard Michel, Elena V. Epure, Romain Hennequin, Christophe Cerisara
- Abstract要約: 既訓練のオーサシップ検証モデルを用いて,引用文を符号化して構築した文字のスタイリスティックな表現について検討する。
以上の結果から,これらのモデルの一部で捉えたスタイリスティックな情報とトピック的な情報の組み合わせは,文字を正確に区別するが,引用の帰属時に意味のみのモデルよりも必ずしも改善されないことが示唆された。
- 参考スコア(独自算出の注目度): 12.300285585201767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent approaches to automatically detect the speaker of an utterance of
direct speech often disregard general information about characters in favor of
local information found in the context, such as surrounding mentions of
entities. In this work, we explore stylistic representations of characters
built by encoding their quotes with off-the-shelf pretrained Authorship
Verification models in a large corpus of English novels (the Project Dialogism
Novel Corpus). Results suggest that the combination of stylistic and topical
information captured in some of these models accurately distinguish characters
among each other, but does not necessarily improve over semantic-only models
when attributing quotes. However, these results vary across novels and more
investigation of stylometric models particularly tailored for literary texts
and the study of characters should be conducted.
- Abstract(参考訳): 近年, 直接発話の話者を自動的に検出する手法は, 実体の周囲の言及など, 文脈に現れる局所的な情報に有利な文字に関する一般情報を無視していることが多い。
そこで,本研究では,本書の引用文を英語小説のコーパス(プロジェクト対話主義小説コーパス)に予め学習した著者シップ検証モデルでエンコードすることで,文字のスタイル的表現を探索する。
以上の結果から,これらのモデルの一部で捉えたスタイリスティックな情報とトピック的な情報の組み合わせは,文字を正確に区別するが,引用の帰属時に意味のみのモデルよりも必ずしも改善されないことが示唆された。
しかし、これらの結果は小説によって異なっており、特に文体に合わせたスタイルモデルのさらなる調査や文字の研究が求められる。
関連論文リスト
- Identifying Speakers and Addressees of Quotations in Novels with Prompt Learning [5.691280935924612]
そこで本研究では,微調整事前学習モデルに基づく話者とアドレナ識別のための学習手法を提案する。
中国語と英語の両方のデータセットを用いた実験は,提案手法の有効性を示した。
論文 参考訳(メタデータ) (2024-08-18T12:19:18Z) - Improving Quotation Attribution with Fictional Character Embeddings [11.259583037191772]
本稿では,文字のグローバルなスタイリスティックな情報をエンコードする文字埋め込みにより,人気のある引用帰属システムであるBookNLPを提案する。
提案するグローバル文字埋め込みとBookNLPの文脈情報を組み合わせることで,アナフォリックおよび暗黙的引用のための話者識別が向上することを示す。
論文 参考訳(メタデータ) (2024-06-17T09:46:35Z) - Improving Automatic Quotation Attribution in Literary Novels [21.164701493247794]
文学小説における引用帰属の現在のモデルでは、トレーニングやテストデータに利用可能な情報のレベルが異なると仮定している。
文芸小説における注釈付きコア推論と引用の膨大なデータセットを用いて、各サブタスクの最先端モデルを個別にベンチマークする。
また、話者帰属タスクのモデルの評価を行い、簡単な逐次予測モデルが最先端のモデルと同等の精度のスコアを得ることを示す。
論文 参考訳(メタデータ) (2023-07-07T17:37:01Z) - Wave to Syntax: Probing spoken language models for syntax [16.643072915927313]
音声言語の自己教師型および視覚的基盤モデルにおける構文の符号化に着目する。
我々は、構文がネットワークの中間層で最も顕著に捉えられ、より多くのパラメータを持つモデルでより明確に表現されていることを示す。
論文 参考訳(メタデータ) (2023-05-30T11:43:18Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Probing Contextual Language Models for Common Ground with Visual
Representations [76.05769268286038]
我々は、マッチングと非マッチングの視覚表現を区別する上で、テキストのみの表現がいかに効果的かを評価するための探索モデルを設計する。
以上の結果から,言語表現だけでは,適切な対象カテゴリから画像パッチを検索する強力な信号が得られることがわかった。
視覚的に接地された言語モデルは、例えば検索においてテキストのみの言語モデルよりわずかに優れているが、人間よりもはるかに低い。
論文 参考訳(メタデータ) (2020-05-01T21:28:28Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。