Stroke Extraction of Chinese Character Based on Deep Structure
Deformable Image Registration
- URL: http://arxiv.org/abs/2307.04341v1
- Date: Mon, 10 Jul 2023 04:50:17 GMT
- Title: Stroke Extraction of Chinese Character Based on Deep Structure
Deformable Image Registration
- Authors: Meng Li, Yahan Yu, Yi Yang, Guanghao Ren, Jian Wang
- Abstract summary: We propose a deep learning-based character stroke extraction method that takes semantic features and prior information of strokes into consideration.
This method consists of three parts: image registration-based stroke registration that establishes the rough registration of the reference strokes and the target as prior information; image semantic segmentation-based stroke segmentation that preliminarily separates target strokes into seven categories; and high-precision extraction of single strokes.
In the stroke registration, we propose a structure deformable image registration network to achieve structure-deformable transformation while maintaining the stable morphology of single strokes for character images with complex structures.
- Score: 25.49394055539858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stroke extraction of Chinese characters plays an important role in the field
of character recognition and generation. The most existing character stroke
extraction methods focus on image morphological features. These methods usually
lead to errors of cross strokes extraction and stroke matching due to rarely
using stroke semantics and prior information. In this paper, we propose a deep
learning-based character stroke extraction method that takes semantic features
and prior information of strokes into consideration. This method consists of
three parts: image registration-based stroke registration that establishes the
rough registration of the reference strokes and the target as prior
information; image semantic segmentation-based stroke segmentation that
preliminarily separates target strokes into seven categories; and
high-precision extraction of single strokes. In the stroke registration, we
propose a structure deformable image registration network to achieve
structure-deformable transformation while maintaining the stable morphology of
single strokes for character images with complex structures. In order to verify
the effectiveness of the method, we construct two datasets respectively for
calligraphy characters and regular handwriting characters. The experimental
results show that our method strongly outperforms the baselines. Code is
available at https://github.com/MengLi-l1/StrokeExtraction.
Related papers
- Orientation-Independent Chinese Text Recognition in Scene Images [61.34060587461462]
We take the first attempt to extract orientation-independent visual features by disentangling content and orientation information of text images.
Specifically, we introduce a Character Image Reconstruction Network (CIRN) to recover corresponding printed character images with disentangled content and orientation information.
arXiv Detail & Related papers (2023-09-03T05:30:21Z) - Siamese based Neural Network for Offline Writer Identification on word
level data [7.747239584541488]
We propose a novel scheme to identify the author of a document based on the input word image.
Our method is text independent and does not impose any constraint on the size of the input image under examination.
arXiv Detail & Related papers (2022-11-17T10:01:46Z) - Self-supervised Character-to-Character Distillation for Text Recognition [54.12490492265583]
We propose a novel self-supervised Character-to-Character Distillation method, CCD, which enables versatile augmentations to facilitate text representation learning.
CCD achieves state-of-the-art results, with average performance gains of 1.38% in text recognition, 1.7% in text segmentation, 0.24 dB (PSNR) and 0.0321 (SSIM) in text super-resolution.
arXiv Detail & Related papers (2022-11-01T05:48:18Z) - MaskCLIP: Masked Self-Distillation Advances Contrastive Language-Image
Pretraining [138.86293836634323]
MaskCLIP incorporates a newly proposed masked self-distillation into contrastive language-image pretraining.
MaskCLIP achieves superior results in linear probing, finetuning, and zero-shot performance with the guidance of the language encoder.
arXiv Detail & Related papers (2022-08-25T17:59:58Z) - Stroke-Based Autoencoders: Self-Supervised Learners for Efficient
Zero-Shot Chinese Character Recognition [4.64065792373245]
We develop a stroke-based autoencoder to model the sophisticated morphology of Chinese characters.
Our SAE architecture outperforms other existing methods in zero-shot recognition.
arXiv Detail & Related papers (2022-07-17T14:39:10Z) - Text Gestalt: Stroke-Aware Scene Text Image Super-Resolution [31.88960656995447]
We propose a Stroke-Aware Scene Text Image Super-Resolution method containing a Stroke-Focused Module (SFM) to concentrate on stroke-level internal structures of characters in text images.
Specifically, we attempt to design rules for decomposing English characters and digits at stroke-level, then pre-train a text recognizer to provide stroke-level attention maps as positional clues.
The proposed method can indeed generate more distinguishable images on TextZoom and manually constructed Chinese character dataset Degraded-IC13.
arXiv Detail & Related papers (2021-12-13T15:26:10Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Unsupervised Deep Learning for Handwritten Page Segmentation [0.0]
We present an unsupervised deep learning method for page segmentation.
A siamese neural network is trained to differentiate between patches using their measurable properties.
Our experiments show that the proposed unsupervised method is as effective as typical supervised methods.
arXiv Detail & Related papers (2021-01-19T07:13:38Z) - Separating Content from Style Using Adversarial Learning for Recognizing
Text in the Wild [103.51604161298512]
We propose an adversarial learning framework for the generation and recognition of multiple characters in an image.
Our framework can be integrated into recent recognition methods to achieve new state-of-the-art recognition accuracy.
arXiv Detail & Related papers (2020-01-13T12:41:42Z) - TextScanner: Reading Characters in Order for Robust Scene Text
Recognition [60.04267660533966]
TextScanner is an alternative approach for scene text recognition.
It generates pixel-wise, multi-channel segmentation maps for character class, position and order.
It also adopts RNN for context modeling and performs paralleled prediction for character position and class.
arXiv Detail & Related papers (2019-12-28T07:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.