論文の概要: Fairness-aware Federated Minimax Optimization with Convergence Guarantee
- arxiv url: http://arxiv.org/abs/2307.04417v4
- Date: Wed, 3 Jul 2024 07:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 20:43:01.925791
- Title: Fairness-aware Federated Minimax Optimization with Convergence Guarantee
- Title(参考訳): 収束保証を用いたフェアネスを考慮したフェデレーションミニマックス最適化
- Authors: Gerry Windiarto Mohamad Dunda, Shenghui Song,
- Abstract要約: フェデレートラーニング(FL)はそのプライバシー保護機能のためにかなりの注目を集めている。
ユーザデータ管理の自由の欠如は、モデルが人種や性別などのセンシティブな要因に偏っている、グループフェアネスの問題につながる可能性がある。
本稿では,FLにおけるグループフェアネス問題に明示的に対処するために,拡張ラグランジアン法(FFALM)を用いたフェアフェデレーション平均化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 10.727328530242461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has garnered considerable attention due to its privacy-preserving feature. Nonetheless, the lack of freedom in managing user data can lead to group fairness issues, where models are biased towards sensitive factors such as race or gender. To tackle this issue, this paper proposes a novel algorithm, fair federated averaging with augmented Lagrangian method (FFALM), designed explicitly to address group fairness issues in FL. Specifically, we impose a fairness constraint on the training objective and solve the minimax reformulation of the constrained optimization problem. Then, we derive the theoretical upper bound for the convergence rate of FFALM. The effectiveness of FFALM in improving fairness is shown empirically on CelebA and UTKFace datasets in the presence of severe statistical heterogeneity.
- Abstract(参考訳): フェデレートラーニング(FL)はそのプライバシー保護機能のためにかなりの注目を集めている。
それでも、ユーザデータ管理の自由の欠如は、モデルが人種や性別などのセンシティブな要因に偏っている、グループフェアネスの問題につながる可能性がある。
そこで本研究では,FLにおけるグループフェアネス問題に明示的に対処するために,拡張ラグランジアン法(FFALM)を用いたフェアフェデレーション平均化アルゴリズムを提案する。
具体的には、トレーニング目標に公正性制約を課し、制約付き最適化問題の最小化を解消する。
次に、FFALMの収束率の理論上界を導出する。
FFALMの公正性向上効果は,CelebA および UTKFace データセットにおいて,統計的に重大な不均一性の存在下で実証的に示された。
関連論文リスト
- PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning [2.8304839563562436]
公平さとプライバシの原則を同時に遵守するマシンラーニングモデルのトレーニングとデプロイは、大きな課題となる。
本稿では,FLシナリオにおける実用性,プライバシ,公正性のバランスを探究する上で有効な,高レベルのパラメータ化アプローチであるPUFFLEを紹介する。
PUFFLEは多様なデータセット,モデル,データ分布に対して有効であり,モデルの不公平性を75%まで低減し,最悪のシナリオでは有効性を最大17%削減できることを示す。
論文 参考訳(メタデータ) (2024-07-21T17:22:18Z) - FedSat: A Statistical Aggregation Approach for Class Imbalaced Clients in Federated Learning [2.5628953713168685]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習のための有望なパラダイムとして登場した。
本稿ではFedSatについて紹介する。FedSatは様々なデータ不均一性を同時に扱うために設計された新しいFLアプローチである。
論文 参考訳(メタデータ) (2024-07-04T11:50:24Z) - Marginal Debiased Network for Fair Visual Recognition [65.64172835624206]
本稿では,デバイアス表現を学習するための新しい限界脱バイアスネットワーク(MDN)を提案する。
より具体的には、マージンペナルティという概念をフェアネス問題に導入することにより、マージンのソフトマックスロス(MSL)を設計する。
我々のMDNは、表現不足のサンプルに対して顕著な性能を達成でき、従来の手法と比較して優れたデバイアス結果を得ることができる。
論文 参考訳(メタデータ) (2024-01-04T08:57:09Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
フェデレートラーニング(FL)は、分散データからモデルをトレーニングするための、有望な協調的でセキュアなパラダイムとして登場した。
群フェアネスとクライアントフェアネスは、FLにとって重要である2次元のフェアネスである。
グループフェアネスとクライアントフェアネスを同時に達成するために,mFairFLと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T11:37:30Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - EFFL: Egalitarian Fairness in Federated Learning for Mitigating Matthew
Effect [11.24699174877316]
マシュー効果を緩和するために,平等フェアネスフェデレートラーニング(EFFL)を提案する。
EFFLはパフォーマンスの最適性を目指しており、各クライアントに対する経験的リスク損失とバイアスを最小限にしている。
EFFLは、高性能なグローバルモデルを実現する上で、他の最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-09-28T10:51:12Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - FOCUS: Fairness via Agent-Awareness for Federated Learning on
Heterogeneous Data [31.611582207768464]
フェデレートラーニング(FL)は、エージェントがローカルデータを共有せずにグローバルモデルを共同でトレーニングすることを可能にする。
本稿では,異種エージェントの貢献を考慮に入れた,FLフェアネスの正式な定義,エージェント認識によるフェアネス(fairness)を提案する。
また,エージェントクラスタリング(FOCUS)に基づく公正なFLトレーニングアルゴリズムを提案し,FAAが測定したFLの公平性を実現する。
論文 参考訳(メタデータ) (2022-07-21T02:21:03Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Tight Mutual Information Estimation With Contrastive Fenchel-Legendre
Optimization [69.07420650261649]
我々はFLOと呼ばれる新しい,シンプルで強力なコントラストMI推定器を提案する。
実証的に、我々のFLO推定器は前者の限界を克服し、より効率的に学習する。
FLOの有効性は、広範囲なベンチマークを用いて検証され、実際のMI推定におけるトレードオフも明らかにされる。
論文 参考訳(メタデータ) (2021-07-02T15:20:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。