論文の概要: Formulating A Strategic Plan Based On Statistical Analyses And
Applications For Financial Companies Through A Real-World Use Case
- arxiv url: http://arxiv.org/abs/2307.04778v1
- Date: Mon, 10 Jul 2023 05:43:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 17:29:59.449168
- Title: Formulating A Strategic Plan Based On Statistical Analyses And
Applications For Financial Companies Through A Real-World Use Case
- Title(参考訳): 実世界利用事例による金融企業の統計分析と応用に基づく戦略計画の策定
- Authors: Saman Sarraf
- Abstract要約: ビジネス統計は、企業レベルでデータ駆動型戦略計画を実装する上で重要な役割を担います。
本研究では,LendingClub という金融企業に対して,統計分析による戦略的計画を導入する。
このような計画の主な目的は、融資を返済できない借り手への融資のリスクを低減しつつ、会社の収益を増大させることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Business statistics play a crucial role in implementing a data-driven
strategic plan at the enterprise level to employ various analytics where the
outcomes of such a plan enable an enterprise to enhance the decision-making
process or to mitigate risks to the organization. In this work, a strategic
plan informed by the statistical analysis is introduced for a financial company
called LendingClub, where the plan is comprised of exploring the possibility of
onboarding a big data platform along with advanced feature selection
capacities. The main objectives of such a plan are to increase the company's
revenue while reducing the risks of granting loans to borrowers who cannot
return their loans. In this study, different hypotheses formulated to address
the company's concerns are studied, where the results reveal that the amount of
loans profoundly impacts the number of borrowers charging off their loans.
Also, the proposed strategic plan includes onboarding advanced analytics such
as machine learning technologies that allow the company to build better
generalized data-driven predictive models.
- Abstract(参考訳): ビジネス統計は、企業レベルでデータ主導型戦略計画を実施する上で重要な役割を担い、そのような計画の結果を企業が意思決定プロセスを強化したり、組織へのリスクを軽減できる様々な分析手法を採用する。
そこで本研究では,高度な特徴選択能力とともにビッグデータプラットフォームの導入の可能性を探ることを目的とした,レンディングクラブという金融企業に対して,統計的分析により得られた戦略計画を提案する。
このような計画の主な目的は、融資を返済できない借り手への融資のリスクを低減しつつ、会社の収益を増大させることである。
本研究では,企業の関心事に対応するために定式化された異なる仮説について検討し,ローンの額が借入者数に大きく影響することを明らかにした。
また、提案された戦略計画には、機械学習などの高度な分析技術が組み込まれており、同社はより一般的なデータ駆動予測モデルを構築することができる。
関連論文リスト
- On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
さまざまなベンチマークタスクでOpenAIのo1モデルの計画能力を評価する。
その結果,o1-preview は GPT-4 よりもタスク制約に順応していることがわかった。
論文 参考訳(メタデータ) (2024-09-30T03:58:43Z) - ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics [46.57327530703435]
損失回避のようなバイアスによって引き起こされる損失に対する優先順位を求めるリスクは、課題を引き起こし、深刻なネガティブな結果をもたらす可能性がある。
本研究は,リスクサーチの選好を自動的に識別し,説明することにより,組織意思決定者を支援する新しいソリューションであるABIアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-22T23:53:46Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - A machine learning workflow to address credit default prediction [0.44943951389724796]
信用デフォルト予測(CDP)は個人や企業の信用力を評価する上で重要な役割を果たす。
CDPを改善するためのワークフローベースのアプローチを提案する。これは、借り手が信用義務を負う確率を評価するタスクを指す。
論文 参考訳(メタデータ) (2024-03-06T15:30:41Z) - LLM-SAP: Large Language Models Situational Awareness Based Planning [0.0]
我々は、潜在的なリスクを予測し、積極的に軽減する方法論を開発するために、マルチエージェント推論フレームワークを使用します。
提案手法は,人間中心のインタラクションの複雑さを計画プロセスに組み込むことによって,従来のオートマトン理論から分岐する。
論文 参考訳(メタデータ) (2023-12-26T17:19:09Z) - Risk-reducing design and operations toolkit: 90 strategies for managing
risk and uncertainty in decision problems [65.268245109828]
本稿では,このような戦略のカタログを開発し,それらのためのフレームワークを開発する。
高い不確実性のために難解であるように見える決定問題に対して、効率的な応答を提供する、と論じている。
次に、多目的最適化を用いた決定理論にそれらを組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-06T16:14:32Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
我々は,エージェントを世界の初期状態から望ましい目標状態へ移動させる一連の行動を見つけることを目的として,自動計画の問題を考える。
利用可能なプランナと多様なプランナドメインが多数用意されていると仮定し、適切なプランナを特定し、ドメインのパフォーマンスを向上させるために活用できる不可欠な情報を持っている。
論文 参考訳(メタデータ) (2023-07-25T14:51:07Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
ファイナンシャルディストレス予測(Financial Distress Prediction)は、失敗する構造物の数と確率を正確に予測することで、経済において重要な役割を果たす。
しかし、中小企業にとっての財政難の予測は、そのあいまいさが原因で困難である。
本稿では,金融データの薄面成分分析,コーポレートガバナンスの質,および市場交換データを関連ベクタマシンに組み込んだ企業FCPモデルを提案する。
論文 参考訳(メタデータ) (2023-02-23T15:58:30Z) - Embracing advanced AI/ML to help investors achieve success: Vanguard
Reinforcement Learning for Financial Goal Planning [0.0]
強化学習(Reinforcement learning)は、複雑なデータセットに使用できる機械学習アプローチである。
我々は、金融予測、経済指標の予測、貯蓄戦略の作成における機械学習の利用について検討する。
論文 参考訳(メタデータ) (2021-10-18T18:46:20Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
我々は、前向きモデルや後向きモデルによる後向き操作による予測として使われる計画の利益と特異性を理解するために活動する。
本稿では,予測を(再)評価すべき状態の選択に主眼を置いて,計画におけるモデルの利用について検討する。
論文 参考訳(メタデータ) (2020-10-26T16:00:47Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。