論文の概要: Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing
Multiple Degradations in Real-World Images
- arxiv url: http://arxiv.org/abs/2307.05075v1
- Date: Tue, 11 Jul 2023 07:18:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 15:51:23.594036
- Title: Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing
Multiple Degradations in Real-World Images
- Title(参考訳): Uni-Demoval: リアルタイム画像における多重劣化の同時対応のための半スーパービジョンフレームワーク
- Authors: Yongheng Zhang, Danfeng Yan, Yuanqiang Cai
- Abstract要約: Uni-Removalは、現実世界の画像における複数の劣化を取り除くための2段階の半教師付きフレームワークである。
知識伝達の段階では、Uni-Removalは教師付きマルチ教師と学生アーキテクチャを利用する。
ドメイン適応段階では、現実世界の画像に敵判別器を組み込むことにより、教師なしの微調整を行う。
- 参考スコア(独自算出の注目度): 6.3351090376024155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Removing multiple degradations, such as haze, rain, and blur, from real-world
images poses a challenging and illposed problem. Recently, unified models that
can handle different degradations have been proposed and yield promising
results. However, these approaches focus on synthetic images and experience a
significant performance drop when applied to realworld images. In this paper,
we introduce Uni-Removal, a twostage semi-supervised framework for addressing
the removal of multiple degradations in real-world images using a unified model
and parameters. In the knowledge transfer stage, Uni-Removal leverages a
supervised multi-teacher and student architecture in the knowledge transfer
stage to facilitate learning from pretrained teacher networks specialized in
different degradation types. A multi-grained contrastive loss is introduced to
enhance learning from feature and image spaces. In the domain adaptation stage,
unsupervised fine-tuning is performed by incorporating an adversarial
discriminator on real-world images. The integration of an extended
multi-grained contrastive loss and generative adversarial loss enables the
adaptation of the student network from synthetic to real-world domains.
Extensive experiments on real-world degraded datasets demonstrate the
effectiveness of our proposed method. We compare our Uni-Removal framework with
state-of-the-art supervised and unsupervised methods, showcasing its promising
results in real-world image dehazing, deraining, and deblurring simultaneously.
- Abstract(参考訳): 迷路、雨、ぼやけなどの複数の劣化を現実のイメージから取り除くことは、困難な問題を引き起こす。
近年, 異なる劣化を処理可能な統一モデルが提案され, 有望な結果が得られた。
しかし,これらの手法は合成画像に焦点を合わせ,実世界の画像に適用した場合に顕著な性能低下を経験する。
本稿では,実世界の画像における複数の劣化の解消を統一モデルとパラメータを用いて解決する2段階半教師付きフレームワークであるuni-removalを提案する。
知識伝達段階において、単回移動は、知識伝達段階における教師と学生アーキテクチャを活用し、異なる劣化タイプに特化した事前学習された教師ネットワークからの学習を容易にする。
特徴空間と画像空間からの学習を促進するために、多粒のコントラスト損失を導入する。
ドメイン適応段階において、実世界画像に逆判別器を組み込むことにより、教師なし微調整を行う。
拡張された多元的コントラスト損失と生成的敵対的損失の統合は、学生ネットワークを合成から現実世界への適応を可能にする。
実世界の劣化データセットに対する大規模な実験により,提案手法の有効性が示された。
我々は,最先端の教師なしおよび教師なしの手法と比較し,実世界の画像デハジング,デバランシング,デブラリングの有望な結果を示す。
関連論文リスト
- Efficient Degradation-aware Any Image Restoration [83.92870105933679]
我々は,低ランク体制下での学習者(DaLe)を用いた効率的なオールインワン画像復元システムである textitDaAIR を提案する。
モデルキャパシティを入力劣化に動的に割り当てることにより、総合学習と特定の学習を統合した効率的な復調器を実現する。
論文 参考訳(メタデータ) (2024-05-24T11:53:27Z) - Teacher-Student Network for Real-World Face Super-Resolution with Progressive Embedding of Edge Information [2.280954956645056]
実データと合成データの領域ギャップを考慮した,実世界の顔超解像教師学生モデルを提案する。
提案手法は,実世界のFSRにおいて,高品質な顔画像を得るための最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-08T02:48:52Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T08:07:26Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
我々は新しいオールインワン・マルチデグレーション画像復元ネットワーク(AMIRNet)を提案する。
AMIRNetは、クラスタリングによって木構造を段階的に構築することで、未知の劣化画像の劣化表現を学習する。
この木構造表現は、様々な歪みの一貫性と不一致を明示的に反映しており、画像復元の具体的な手がかりとなっている。
論文 参考訳(メタデータ) (2023-08-06T04:51:41Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
画像強調とドメイン適応を同時に行うために,エンドツーエンドの教師支援フレームワークを提案する。
また,教師ネットワークと学生ネットワークのバックボーンとして,マルチステージ型マルチアテンション・ガイド・エンハンスメント・ネットワーク(MAGE-Net)を提案する。
論文 参考訳(メタデータ) (2023-02-23T06:16:15Z) - Learning Degradation Representations for Image Deblurring [37.80709422920307]
ぼやけた画像の空間適応的劣化表現を学習するための枠組みを提案する。
劣化表現の表現性を改善するために、新しい共同画像再生・復調学習プロセスを提案する。
GoProとRealBlurのデータセットの実験では、学習した劣化表現を用いたデブロアリングフレームワークが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-08-10T09:53:16Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
実世界の画像超解像は,高品質な画像を得るための実用的な画像復元問題である。
深層学習に基づく手法は、現実世界の超解像データセットの復元に期待できる品質を実現している。
本稿では,RWSR-EDL(Real-World Image Super-Resolution by Exclusionary Dual-Learning)を提案する。
論文 参考訳(メタデータ) (2022-06-06T13:28:15Z) - Mutual Learning for Domain Adaptation: Self-distillation Image Dehazing
Network with Sample-cycle [7.452382358080454]
ドメイン適応のための相互学習脱ハージングフレームワークを提案する。
具体的には、まず、合成ドメインの教師ネットワークと、実ドメインの学生ネットワークの2つのシアムネットワークを考案する。
この枠組みは, 主観的, 客観的評価の観点から, 最先端の脱ハージング技術より優れていることを示す。
論文 参考訳(メタデータ) (2022-03-17T16:32:14Z) - Enhancing Photorealism Enhancement [83.88433283714461]
本稿では,畳み込みネットワークを用いた合成画像のリアリズム向上手法を提案する。
一般的に使用されるデータセットのシーンレイアウトの分布を分析し、重要な方法で異なることを見つけます。
近年のイメージ・ツー・イメージ翻訳法と比較して,安定性とリアリズムの大幅な向上が報告されている。
論文 参考訳(メタデータ) (2021-05-10T19:00:49Z) - Real-world Person Re-Identification via Degradation Invariance Learning [111.86722193694462]
現実のシナリオにおける人物再識別(Re-ID)は通常、低解像度、弱い照明、ぼやけ、悪天候などの様々な劣化要因に悩まされる。
本稿では,現実世界のRe-IDを対象とした劣化不変学習フレームワークを提案する。
自己教師付き不整合表現学習戦略を導入することにより,個人性に関連する頑健な特徴を同時に抽出することができる。
論文 参考訳(メタデータ) (2020-04-10T07:58:50Z) - Learning Invariant Representation for Unsupervised Image Restoration [20.61038510024114]
クロスドメイン転送は、教師なし画像復元タスクに適用される。
雑音データから不変表現を明示的に学習する教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2020-03-28T11:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。