論文の概要: Teacher-Student Network for Real-World Face Super-Resolution with Progressive Embedding of Edge Information
- arxiv url: http://arxiv.org/abs/2405.04778v1
- Date: Wed, 8 May 2024 02:48:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:24:34.059641
- Title: Teacher-Student Network for Real-World Face Super-Resolution with Progressive Embedding of Edge Information
- Title(参考訳): エッジ情報のプログレッシブ埋め込みによる実世界顔超解像のための教師学習ネットワーク
- Authors: Zhilei Liu, Chenggong Zhang,
- Abstract要約: 実データと合成データの領域ギャップを考慮した,実世界の顔超解像教師学生モデルを提案する。
提案手法は,実世界のFSRにおいて,高品質な顔画像を得るための最先端手法を超越した手法である。
- 参考スコア(独自算出の注目度): 2.280954956645056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional face super-resolution (FSR) methods trained on synthetic datasets usually have poor generalization ability for real-world face images. Recent work has utilized complex degradation models or training networks to simulate the real degradation process, but this limits the performance of these methods due to the domain differences that still exist between the generated low-resolution images and the real low-resolution images. Moreover, because of the existence of a domain gap, the semantic feature information of the target domain may be affected when synthetic data and real data are utilized to train super-resolution models simultaneously. In this study, a real-world face super-resolution teacher-student model is proposed, which considers the domain gap between real and synthetic data and progressively includes diverse edge information by using the recurrent network's intermediate outputs. Extensive experiments demonstrate that our proposed approach surpasses state-of-the-art methods in obtaining high-quality face images for real-world FSR.
- Abstract(参考訳): 合成データセットで訓練された伝統的な顔超解像法(FSR)は通常、現実世界の顔画像に対する一般化能力に乏しい。
近年の研究では、複雑な劣化モデルやトレーニングネットワークを用いて、実際の劣化過程をシミュレートしているが、これは、生成された低解像度画像と実際の低解像度画像の間にまだ存在する領域差により、これらの手法の性能が制限されている。
さらに、ドメインギャップが存在するため、合成データと実データを用いて同時に超解像モデルのトレーニングを行う場合、対象ドメインのセマンティック特徴情報が影響を受ける可能性がある。
本研究では, 実データと合成データの領域ギャップを考慮し, 繰り返しネットワークの中間出力を用いて, 多様なエッジ情報を含む実世界の顔超解像教師学生モデルを提案する。
広汎な実験により,提案手法は実世界のFSRのための高品質な顔画像を得る上で,最先端の手法を超越していることが示された。
関連論文リスト
- Towards Realistic Data Generation for Real-World Super-Resolution [79.24617577528593]
RealDGenは、現実世界の超解像のために設計された教師なし学習データ生成フレームワークである。
我々は,コンテンツ分解脱結合拡散モデルに統合されたコンテンツと劣化抽出戦略を開発する。
実験により、RealDGenは、現実世界の劣化を反映する大規模で高品質なペアデータを生成するのに優れていることが示された。
論文 参考訳(メタデータ) (2024-06-11T13:34:57Z) - Real-GDSR: Real-World Guided DSM Super-Resolution via Edge-Enhancing Residual Network [2.3020018305241337]
低解像度デジタルサーフェスモデル(DSM)は、ノイズ、センサーの制限、データ取得条件の影響を受けやすい特性を特徴とする。
このため、合成データで訓練された超解像モデルは、実データでは効果的に機能しない。
本稿では,REAL-GDSRと呼ばれる実世界のDSM超解像の複雑さに対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-05T07:24:10Z) - Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary Super-Resolution [81.74583887661794]
実世界の任意の超解像のトレーニングと評価のために,整数と非整数のスケーリング因子を併用した新しい実世界の超解像ベンチマークを構築した。
具体的には,実世界の劣化による画像レベルの変形と画素レベルの変形の両方を扱うために,外観埋め込みと変形場を設計する。
実世界の任意の超解像のためのRealArbiSRおよびRealSRベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-16T13:44:42Z) - Uni-Removal: A Semi-Supervised Framework for Simultaneously Addressing
Multiple Degradations in Real-World Images [6.3351090376024155]
Uni-Removalは、現実世界の画像における複数の劣化を取り除くための2段階の半教師付きフレームワークである。
知識伝達の段階では、Uni-Removalは教師付きマルチ教師と学生アーキテクチャを利用する。
ドメイン適応段階では、現実世界の画像に敵判別器を組み込むことにより、教師なしの微調整を行う。
論文 参考訳(メタデータ) (2023-07-11T07:18:15Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Rethinking Blur Synthesis for Deep Real-World Image Deblurring [4.00114307523959]
本稿では,撮影過程をシミュレートする,新しいリアルなボケ合成パイプラインを提案する。
機能領域における非局所的依存関係と局所的コンテキストを同時にキャプチャする効果的なデブロアリングモデルを開発する。
3つの実世界のデータセットに関する総合的な実験により、提案したデブロアリングモデルは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-28T06:50:16Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
実世界の画像超解像は,高品質な画像を得るための実用的な画像復元問題である。
深層学習に基づく手法は、現実世界の超解像データセットの復元に期待できる品質を実現している。
本稿では,RWSR-EDL(Real-World Image Super-Resolution by Exclusionary Dual-Learning)を提案する。
論文 参考訳(メタデータ) (2022-06-06T13:28:15Z) - SelFSR: Self-Conditioned Face Super-Resolution in the Wild via Flow
Field Degradation Network [12.976199676093442]
野生における顔超解像のための新しいドメイン適応分解ネットワークを提案する。
我々のモデルは,CelebAと実世界の顔データセットの両方で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-20T17:04:00Z) - Learning Inverse Rendering of Faces from Real-world Videos [52.313931830408386]
既存の方法は、顔画像を3つの構成要素(アルベド、ノーマル、照明)に分解する。
本稿では,アルベドと正常の整合性の仮定に基づいて,我々のモデルを実顔ビデオでトレーニングするための弱い教師付きトレーニング手法を提案する。
私たちのネットワークは、実データと合成データの両方で訓練されています。
論文 参考訳(メタデータ) (2020-03-26T17:26:40Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。