Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach
- URL: http://arxiv.org/abs/2307.05333v1
- Date: Mon, 3 Jul 2023 09:21:36 GMT
- Title: Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach
- Authors: Sharmin Sultana, Md Mahmudur Rahman, Atqiya Munawara Mahi, Shao-Hsien
Liu, Mohammad Arif Ul Alam
- Abstract summary: We propose a Multi-attribute Fairness Loss (MAFL) based CNN model to account for any sensitive attributes included in the data.
We compare the proposed model with well-known existing mitigation procedures, and studies reveal that the implemented model performs favorably in contrast to state-of-the-art methods.
- Score: 3.799109312082668
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The combination of diverse health data (IoT, EHR, and clinical surveys) and
scalable-adaptable Artificial Intelligence (AI), has enabled the discovery of
physical, behavioral, and psycho-social indicators of pain status. Despite the
hype and promise to fundamentally alter the healthcare system with
technological advancements, much AI adoption in clinical pain evaluation has
been hampered by the heterogeneity of the problem itself and other challenges,
such as personalization and fairness. Studies have revealed that many AI (i.e.,
machine learning or deep learning) models display biases and discriminate
against specific population segments (such as those based on gender or
ethnicity), which breeds skepticism among medical professionals about AI
adaptability. In this paper, we propose a Multi-attribute Fairness Loss (MAFL)
based CNN model that aims to account for any sensitive attributes included in
the data and fairly predict patients' pain status while attempting to minimize
the discrepancies between privileged and unprivileged groups. In order to
determine whether the trade-off between accuracy and fairness can be satisfied,
we compare the proposed model with well-known existing mitigation procedures,
and studies reveal that the implemented model performs favorably in contrast to
state-of-the-art methods. Utilizing NIH All-Of-US data, where a cohort of 868
distinct individuals with wearables and EHR data gathered over 1500 days has
been taken into consideration to analyze our suggested fair pain assessment
system.
Related papers
- Towards a Transportable Causal Network Model Based on Observational
Healthcare Data [1.333879175460266]
We propose a novel approach that combines selection diagrams, missingness graphs, causal discovery and prior knowledge into a single graphical model.
We learn this model from data comprising two different cohorts of patients.
The resulting causal network model is validated by expert clinicians in terms of risk assessment, accuracy and explainability.
arXiv Detail & Related papers (2023-11-13T13:23:31Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Mitigating Health Disparities in EHR via Deconfounder [5.511343163506091]
We propose a novel framework, Parity Medical Deconfounder (PriMeD), to deal with the disparity issue in healthcare datasets.
PriMeD adopts a Conditional Variational Autoencoder (CVAE) to learn latent factors (substitute confounders) for observational data.
arXiv Detail & Related papers (2022-10-28T05:16:50Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - Explaining medical AI performance disparities across sites with
confounder Shapley value analysis [8.785345834486057]
Multi-site evaluations are key to diagnosing such disparities.
Our framework provides a method for quantifying the marginal and cumulative effect of each type of bias on the overall performance difference.
We demonstrate its usefulness in a case study of a deep learning model trained to detect the presence of pneumothorax.
arXiv Detail & Related papers (2021-11-12T18:54:10Z) - Algorithmic encoding of protected characteristics and its implications
on disparities across subgroups [17.415882865534638]
Machine learning models may pick up undesirable correlations between a patient's racial identity and clinical outcome.
Very little is known about how these biases are encoded and how one may reduce or even remove disparate performance.
arXiv Detail & Related papers (2021-10-27T20:30:57Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.