論文の概要: Leveraging Variational Autoencoders for Parameterized MMSE Estimation
- arxiv url: http://arxiv.org/abs/2307.05352v2
- Date: Thu, 28 Mar 2024 16:51:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 21:53:04.714361
- Title: Leveraging Variational Autoencoders for Parameterized MMSE Estimation
- Title(参考訳): パラメータ化MMSE推定のための変分オートエンコーダの活用
- Authors: Michael Baur, Benedikt Fesl, Wolfgang Utschick,
- Abstract要約: 条件付き線形最小二乗誤差推定器のパラメータ化のための変分オートエンコーダに基づくフレームワークを提案する。
導出した推定器は、推定問題の生成前として変分オートエンコーダを用いて最小平均2乗誤差推定器を近似する。
提案手法と最小平均二乗誤差推定器の差分を限定して厳密な解析を行う。
- 参考スコア(独自算出の注目度): 10.141454378473972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this manuscript, we propose to use a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator. The variational autoencoder models the underlying unknown data distribution as conditionally Gaussian, yielding the conditional first and second moments of the estimand, given a noisy observation. The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem. We propose three estimator variants that differ in their access to ground-truth data during the training and estimation phases. The proposed estimator variant trained solely on noisy observations is particularly noteworthy as it does not require access to ground-truth data during training or estimation. We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator, connecting the training objective and the resulting estimation performance. Furthermore, the resulting bound reveals that the proposed estimator entails a bias-variance tradeoff, which is well-known in the estimation literature. As an example application, we portray channel estimation, allowing for a structured covariance matrix parameterization and low-complexity implementation. Nevertheless, the proposed framework is not limited to channel estimation but can be applied to a broad class of estimation problems. Extensive numerical simulations first validate the theoretical analysis of the proposed variational autoencoder-based estimators and then demonstrate excellent estimation performance compared to related classical and machine learning-based state-of-the-art estimators.
- Abstract(参考訳): 本稿では,条件付き線形平均二乗誤差推定器のパラメータ化のために,変分オートエンコーダに基づくフレームワークを提案する。
変分オートエンコーダは、基礎となる未知のデータ分布を条件付きガウスとしてモデル化し、雑音の観測により、推定値の第1モーメントと第2モーメントを生成する。
導出した推定器は、推定問題の生成前として変分オートエンコーダを用いて最小平均2乗誤差推定器を近似する。
そこで本研究では,トレーニングおよび推定フェーズにおいて,地下構造データへのアクセスに異なる3つの推定器変種を提案する。
ノイズの観測のみに基づいて訓練された推定器の変種は、特に、訓練や推定中に地平線データにアクセスする必要がなくなるため、注目すべきである。
提案手法と最小平均二乗誤差推定器の差分を限定して厳密な解析を行い,学習目標と得られた推定性能を接続する。
さらに,提案した推定器にはバイアス分散トレードオフが伴っており,推定文献でよく知られている。
例として、チャネル推定を記述し、構造化された共分散行列のパラメータ化と低複雑さの実装を可能にする。
しかし,提案手法はチャネル推定に限らず,広い範囲の推定問題に適用可能である。
大規模数値シミュレーションは,提案した変分オートエンコーダに基づく推定器の理論解析をまず検証し,関連する古典的および機械学習に基づく推定器と比較して優れた推定性能を示す。
関連論文リスト
- Bayesian Cramér-Rao Bound Estimation with Score-Based Models [3.4480437706804503]
ベイジアンクラム・ラオ境界(英語版)(英: Bayesian Cram'er-Rao bound, CRB)は、任意のベイジアン推定器の平均二乗誤差に対する下界を与える。
本研究は,スコアマッチングを用いたCRBのための新しいデータ駆動推定手法を提案する。
論文 参考訳(メタデータ) (2023-09-28T00:22:21Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
対称正定値多様体の対数ユークリッド幾何学を利用する共分散行列の多値推定器を導入する。
固定予算が与えられた推定器の平均二乗誤差を最小化する最適サンプル割り当て方式を開発した。
物理アプリケーションからのデータによるアプローチの評価は、ベンチマークと比較すると、より正確なメトリック学習と1桁以上のスピードアップを示している。
論文 参考訳(メタデータ) (2023-01-31T16:33:46Z) - Prediction Errors for Penalized Regressions based on Generalized
Approximate Message Passing [0.0]
C_p$ criterion, Information criteria, and leave-one-out Cross Validation (LOOCV) error。
GAMPの枠組みでは,推定値の分散を利用して情報基準を表現できることが示されている。
論文 参考訳(メタデータ) (2022-06-26T09:42:39Z) - Semi-Supervised Quantile Estimation: Robust and Efficient Inference in High Dimensional Settings [0.5735035463793009]
2つの利用可能なデータセットを特徴とする半教師付き環境での量子推定を考察する。
本稿では,2つのデータセットに基づいて,応答量子化(s)に対する半教師付き推定器群を提案する。
論文 参考訳(メタデータ) (2022-01-25T10:02:23Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Optimal and Safe Estimation for High-Dimensional Semi-Supervised
Learning [4.4102422716568235]
本研究では,高次元半教師あり学習における推定問題について考察する。
まず,パラメータ推定のためのミニマックス下限を半教師付き設定で確立する。
この下界に到達可能な最適半教師付き推定器を提案する。
論文 参考訳(メタデータ) (2020-11-28T18:26:46Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Nonparametric Estimation of the Fisher Information and Its Applications [82.00720226775964]
本稿では,大きさn$のランダムサンプルからフィッシャー情報の位置推定の問題について考察する。
Bhattacharyaにより提案された推定器を再検討し、収束率の向上を導出する。
クリッピング推定器と呼ばれる新しい推定器を提案する。
論文 参考訳(メタデータ) (2020-05-07T17:21:56Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。