論文の概要: Optimized Crystallographic Graph Generation for Material Science
- arxiv url: http://arxiv.org/abs/2307.05380v1
- Date: Wed, 7 Jun 2023 15:30:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 17:55:09.626251
- Title: Optimized Crystallographic Graph Generation for Material Science
- Title(参考訳): 物質科学のための最適結晶グラフ生成
- Authors: Astrid Klipfel and Ya\"el Fr\'egier and Adlane Sayede and Zied
Bouraoui
- Abstract要約: 我々は、ニューラルネットワークアーキテクチャのトレーニング中にリアルタイムでグラフを生成するフレームワークであるpyMatGraphを提供する。
当社のツールでは,構造体のグラフを更新可能であり,GPU側で前方伝播を行う際に,ジオメトリを更新し,更新されたグラフを処理することができる。
- 参考スコア(独自算出の注目度): 13.988999939285307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks are widely used in machine learning applied to
chemistry, and in particular for material science discovery. For crystalline
materials, however, generating graph-based representation from geometrical
information for neural networks is not a trivial task. The periodicity of
crystalline needs efficient implementations to be processed in real-time under
a massively parallel environment. With the aim of training graph-based
generative models of new material discovery, we propose an efficient tool to
generate cutoff graphs and k-nearest-neighbours graphs of periodic structures
within GPU optimization. We provide pyMatGraph a Pytorch-compatible framework
to generate graphs in real-time during the training of neural network
architecture. Our tool can update a graph of a structure, making generative
models able to update the geometry and process the updated graph during the
forward propagation on the GPU side. Our code is publicly available at
https://github.com/aklipf/mat-graph.
- Abstract(参考訳): グラフニューラルネットワークは、化学、特に物質科学の発見に適用される機械学習で広く使われている。
しかし、結晶材料では、ニューラルネットワークの幾何学的情報からグラフベースの表現を生成することは簡単な作業ではない。
結晶の周期性は、超並列環境下でリアルタイムに処理される効率的な実装を必要とする。
新たな物質発見のグラフに基づく生成モデルを訓練することを目的として,GPU最適化における周期構造のカットオフグラフとk-アネレスグラフを生成する効率的なツールを提案する。
我々は、ニューラルネットワークアーキテクチャのトレーニング中にリアルタイムでグラフを生成するPytorch互換フレームワークであるpyMatGraphを提供する。
このツールは、構造のグラフを更新でき、生成モデルが幾何を更新でき、gpu側での前方伝播中に更新されたグラフを処理できます。
私たちのコードはhttps://github.com/aklipf/mat-graph.comで公開されています。
関連論文リスト
- Dynamic and Textual Graph Generation Via Large-Scale LLM-based Agent Simulation [70.60461609393779]
GraphAgent-Generator (GAG) は動的グラフ生成のための新しいシミュレーションベースのフレームワークである。
本フレームワークは,確立されたネットワーク科学理論において,7つのマクロレベルの構造特性を効果的に再現する。
最大10万近いノードと1000万のエッジを持つグラフの生成をサポートし、最低速度は90.4%である。
論文 参考訳(メタデータ) (2024-10-13T12:57:08Z) - Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNは、各ノードの隣人からのメッセージを集約することで、入力グラフ内の各ノードの表現を反復的に更新する。
MPNNは、あまりスパースではないため、すぐに大きなグラフの禁止になるかもしれない。
本稿では,入力グラフを交差するコミュニティグラフ (ICG) として近似することを提案する。
論文 参考訳(メタデータ) (2024-05-31T09:26:26Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Towards Real-Time Temporal Graph Learning [10.647431919265346]
本稿では、時間グラフ構築を行い、低次元ノード埋め込みを生成し、オンライン環境でニューラルネットワークモデルを訓練するエンドツーエンドグラフ学習パイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-08T22:14:31Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。