論文の概要: Dynamic and Textual Graph Generation Via Large-Scale LLM-based Agent Simulation
- arxiv url: http://arxiv.org/abs/2410.09824v4
- Date: Mon, 11 Nov 2024 14:41:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:27.311615
- Title: Dynamic and Textual Graph Generation Via Large-Scale LLM-based Agent Simulation
- Title(参考訳): 大規模LCMエージェントシミュレーションによる動的・テキストグラフ生成
- Authors: Jiarui Ji, Runlin Lei, Jialing Bi, Zhewei Wei, Yankai Lin, Xuchen Pan, Yaliang Li, Bolin Ding,
- Abstract要約: GraphAgent-Generator (GAG) は動的グラフ生成のための新しいシミュレーションベースのフレームワークである。
本フレームワークは,確立されたネットワーク科学理論において,7つのマクロレベルの構造特性を効果的に再現する。
最大10万近いノードと1000万のエッジを持つグラフの生成をサポートし、最低速度は90.4%である。
- 参考スコア(独自算出の注目度): 70.60461609393779
- License:
- Abstract: Graph generation is a fundamental task that has been extensively studied in social, technological, and scientific analysis. For modeling the dynamic graph evolution process, traditional rule-based methods struggle to capture community structures within graphs, while deep learning methods only focus on fitting training graphs. This limits existing graph generators to producing graphs that adhere to predefined rules or closely resemble training datasets, achieving poor performance in dynamic graph generation. Given that graphs are abstract representations arising from pairwise interactions in human activities, a realistic simulation of human-wise interaction could provide deeper insights into the graph evolution mechanism. With the increasing recognition of large language models (LLMs) in simulating human behavior, we introduce GraphAgent-Generator (GAG), a novel simulation-based framework for dynamic graph generation. Without training or fine-tuning process of LLM, our framework effectively replicates seven macro-level structural characteristics in established network science theories while surpassing existing baselines in graph expansion tasks by 31\% on specific evaluation metrics. Through node classification task, we validate GAG effectively preserves characteristics of real-world network for node-wise textual features in generated text-rich graph. Furthermore, by incorporating parallel acceleration, GAG supports generating graphs with up to nearly 100,000 nodes or 10 million edges through large-scale LLM-based agent simulation, with a minimum speed-up of 90.4\%. The source code is available at https://anonymous.4open.science/r/GraphAgent-2206.
- Abstract(参考訳): グラフ生成は、社会、技術、科学分析において広く研究されている基本的な課題である。
動的グラフの進化過程をモデル化するために、従来のルールベースの手法は、グラフ内のコミュニティ構造を捉えるのに苦労する。
これにより、既存のグラフジェネレータは、事前定義されたルールに準拠したり、トレーニングデータセットによく似たグラフを生成することができ、動的グラフ生成ではパフォーマンスが劣る。
グラフは、人間の活動におけるペアワイズ相互作用から生じる抽象的な表現であることを考えると、人間の相互作用の現実的なシミュレーションは、グラフの進化機構について深い洞察を与える可能性がある。
人行動のシミュレーションにおいて,大規模言語モデル (LLM) の認識が高まるとともに,動的グラフ生成のための新しいシミュレーションベースフレームワークである GraphAgent-Generator (GAG) を導入する。
LLMのトレーニングや微調整を行なわず,既存のグラフ拡張タスクのベースラインを31倍に越えつつ,確立されたネットワーク科学理論における7つのマクロレベルの構造特性を効果的に再現する。
ノード分類タスクを通じて、GAGは生成したテキストリッチグラフのノード単位のテキスト特徴に対して、実世界のネットワーク特性を効果的に保存する。
さらに、並列加速度を組み込むことで、GAGは大規模なLSMベースのエージェントシミュレーションにより、最大10万のノードと1000万のエッジを持つグラフの生成をサポートし、最小速度は90.4\%である。
ソースコードはhttps://anonymous.4open.science/r/GraphAgent-2206で公開されている。
関連論文リスト
- Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフパターンから直接学習するためのフレームワークであるNeural Graph Pattern Machine (GPM)を提案する。
GPMは、下流タスクにおいて最も関連性の高いものを特定しながら、下位構造を効率的に抽出し、エンコードする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks [53.10674067060148]
共有インタラクション(SI)は、複数のノード間のノードのコントリビューションとインタラクションを定量化する。
GNNアーキテクチャを利用して、ノード埋め込みにおける相互作用の構造がグラフ予測のために保存されていることを示す。
任意の順序SIを正確に計算するための効率的なアプローチであるGraphSHAP-IQを導入する。
論文 参考訳(メタデータ) (2025-01-28T13:37:44Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)の統合は、有望な技術パラダイムとして現れている。
データ品質を根本的に向上させるために、リッチなセマンティックコンテキストを持つグラフ記述テキストを活用します。
この研究は、グラフ学習方法論の進歩を目指す研究者や実践者にとって、基礎的な参考となる。
論文 参考訳(メタデータ) (2024-12-17T01:41:17Z) - Tensor-Fused Multi-View Graph Contrastive Learning [12.412040359604163]
グラフコントラッシブラーニング(GCL)は、グラフニューラルネットワーク(GNN)の機能を強化し、ラベルのないグラフ構造化データからリッチな表現を学習するための、有望なアプローチとして登場した。
現在のGCLモデルは、計算要求と限られた機能利用の課題に直面している。
提案するTensorMV-GCLは,拡張された永続的ホモロジーをGCL表現と統合し,マルチスケールな特徴抽出を容易にする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-20T01:40:12Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
論文 参考訳(メタデータ) (2023-10-20T22:12:46Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Learning Attribute-Structure Co-Evolutions in Dynamic Graphs [28.848851822725933]
本稿では動的属性グラフシーケンスをモデル化するCoEvoGNNという新しいフレームワークを提案する。
これは、シーケンスを通じて生成を埋め込むことで、現在のグラフに対する以前のグラフの影響を保っている。
進化における長距離依存をモデル化するための時間的自己認識機構を持つ。
論文 参考訳(メタデータ) (2020-07-25T20:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。