My3DGen: A Scalable Personalized 3D Generative Model
- URL: http://arxiv.org/abs/2307.05468v4
- Date: Mon, 20 May 2024 08:17:21 GMT
- Title: My3DGen: A Scalable Personalized 3D Generative Model
- Authors: Luchao Qi, Jiaye Wu, Annie N. Wang, Shengze Wang, Roni Sengupta,
- Abstract summary: My3DGen generates a personalized 3D prior of an individual using as few as 50 training images.
My3DGen allows for novel view synthesis, semantic editing of a given face, and synthesizing novel appearances.
- Score: 4.94227864283443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, generative 3D face models (e.g., EG3D) have been developed to tackle the problem of synthesizing photo-realistic faces. However, these models are often unable to capture facial features unique to each individual, highlighting the importance of personalization. Some prior works have shown promise in personalizing generative face models, but these studies primarily focus on 2D settings. Also, these methods require both fine-tuning and storing a large number of parameters for each user, posing a hindrance to achieving scalable personalization. Another challenge of personalization is the limited number of training images available for each individual, which often leads to overfitting when using full fine-tuning methods. Our proposed approach, My3DGen, generates a personalized 3D prior of an individual using as few as 50 training images. My3DGen allows for novel view synthesis, semantic editing of a given face (e.g. adding a smile), and synthesizing novel appearances, all while preserving the original person's identity. We decouple the 3D facial features into global features and personalized features by freezing the pre-trained EG3D and training additional personalized weights through low-rank decomposition. As a result, My3DGen introduces only $\textbf{240K}$ personalized parameters per individual, leading to a $\textbf{127}\times$ reduction in trainable parameters compared to the $\textbf{30.6M}$ required for fine-tuning the entire parameter space. Despite this significant reduction in storage, our model preserves identity features without compromising the quality of downstream applications.
Related papers
- Low-Rank Head Avatar Personalization with Registers [36.7667914190956]
We introduce a novel method for low-rank personalization of a generic model for head avatar generation.<n>Our approach faithfully captures unseen faces, outperforming existing methods quantitatively and qualitatively.
arXiv Detail & Related papers (2025-06-02T17:53:14Z) - FRESA: Feedforward Reconstruction of Personalized Skinned Avatars from Few Images [74.86864398919467]
We present a novel method for reconstructing personalized 3D human avatars with realistic animation from only a few images.
We learn a universal prior from over a thousand clothed humans to achieve instant feedforward generation and zero-shot generalization.
Our method generates more authentic reconstruction and animation than state-of-the-arts, and can be directly generalized to inputs from casually taken phone photos.
arXiv Detail & Related papers (2025-03-24T23:20:47Z) - Single Image, Any Face: Generalisable 3D Face Generation [59.9369171926757]
We propose a novel model, Gen3D-Face, which generates 3D human faces with unconstrained single image input.
To the best of our knowledge, this is the first attempt and benchmark for creating photorealistic 3D human face avatars from single images.
arXiv Detail & Related papers (2024-09-25T14:56:37Z) - SPARK: Self-supervised Personalized Real-time Monocular Face Capture [6.093606972415841]
Current state of the art approaches have the ability to regress parametric 3D face models in real-time across a wide range of identities.
We propose a method for high-precision 3D face capture taking advantage of a collection of unconstrained videos of a subject as prior information.
arXiv Detail & Related papers (2024-09-12T12:30:04Z) - DreamVTON: Customizing 3D Virtual Try-on with Personalized Diffusion Models [56.55549019625362]
Image-based 3D Virtual Try-ON (VTON) aims to sculpt the 3D human according to person and clothes images.
Recent text-to-3D methods achieve remarkable improvement in high-fidelity 3D human generation.
We propose a novel customizing 3D human try-on model, named textbfDreamVTON, to separately optimize the geometry and texture of the 3D human.
arXiv Detail & Related papers (2024-07-23T14:25:28Z) - FaceGPT: Self-supervised Learning to Chat about 3D Human Faces [69.4651241319356]
We introduce FaceGPT, a self-supervised learning framework for Large Vision-Language Models (VLMs) to reason about 3D human faces from images and text.
FaceGPT overcomes this limitation by embedding the parameters of a 3D morphable face model (3DMM) into the token space of a VLM.
We show that FaceGPT achieves high-quality 3D face reconstructions and retains the ability for general-purpose visual instruction following.
arXiv Detail & Related papers (2024-06-11T11:13:29Z) - 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
We propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations.
By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
arXiv Detail & Related papers (2024-03-17T06:31:16Z) - GAN-Avatar: Controllable Personalized GAN-based Human Head Avatar [48.21353924040671]
We propose to learn person-specific animatable avatars from images without assuming to have access to precise facial expression tracking.
We learn a mapping from 3DMM facial expression parameters to the latent space of the generative model.
With this scheme, we decouple 3D appearance reconstruction and animation control to achieve high fidelity in image synthesis.
arXiv Detail & Related papers (2023-11-22T19:13:00Z) - Inserting Anybody in Diffusion Models via Celeb Basis [29.51292196851589]
We propose a new personalization method that allows for the seamless integration of a unique individual into the pre-trained diffusion model.
To achieve this, we first analyze and build a well-defined celeb basis from the embedding space of the pre-trained large text encoder.
Empowered by the proposed celeb basis, the new identity in our customized model showcases a better concept combination ability than previous personalization methods.
arXiv Detail & Related papers (2023-06-01T17:30:24Z) - Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo
Collection [65.92058628082322]
Non-parametric face modeling aims to reconstruct 3D face only from images without shape assumptions.
This paper presents a novel Learning to Aggregate and Personalize framework for unsupervised robust 3D face modeling.
arXiv Detail & Related papers (2021-06-15T03:10:17Z) - Personalized Face Modeling for Improved Face Reconstruction and Motion
Retargeting [22.24046752858929]
We propose an end-to-end framework that jointly learns a personalized face model per user and per-frame facial motion parameters.
Specifically, we learn user-specific expression blendshapes and dynamic (expression-specific) albedo maps by predicting personalized corrections.
Experimental results show that our personalization accurately captures fine-grained facial dynamics in a wide range of conditions.
arXiv Detail & Related papers (2020-07-14T01:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.