論文の概要: Better Handling Coreference Resolution in Aspect Level Sentiment
Classification by Fine-Tuning Language Models
- arxiv url: http://arxiv.org/abs/2307.05646v1
- Date: Tue, 11 Jul 2023 12:43:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 15:35:25.726385
- Title: Better Handling Coreference Resolution in Aspect Level Sentiment
Classification by Fine-Tuning Language Models
- Title(参考訳): 微調整言語モデルによるアスペクトレベル感性分類における整合性の改善
- Authors: Dhruv Mullick, Bilal Ghanem, Alona Fyshe
- Abstract要約: Aspect Level Sentiment Classification (ALSC) による顧客フィードバック監視の自動化
大規模言語モデル(LLM)は多くの最先端のALSCソリューションの中心であるが、Coreference Resolution (CR)を必要とするいくつかのシナリオでは性能が悪くなっている。
本稿では,CRを含むレビューにおけるLLMの性能向上のためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.2605449879340656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Customer feedback is invaluable to companies as they refine their products.
Monitoring customer feedback can be automated with Aspect Level Sentiment
Classification (ALSC) which allows us to analyse specific aspects of the
products in reviews. Large Language Models (LLMs) are the heart of many
state-of-the-art ALSC solutions, but they perform poorly in some scenarios
requiring Coreference Resolution (CR). In this work, we propose a framework to
improve an LLM's performance on CR-containing reviews by fine tuning on highly
inferential tasks. We show that the performance improvement is likely
attributed to the improved model CR ability. We also release a new dataset that
focuses on CR in ALSC.
- Abstract(参考訳): 顧客からのフィードバックは、製品を洗練する企業にとって貴重なことです。
顧客フィードバックの監視は、アスペクトレベルの感情分類(alsc)によって自動化され、レビュー中の製品の特定の側面を分析することができます。
大規模言語モデル(llm)は多くの最先端のalscソリューションの中心であるが、いくつかのシナリオではコリファレンスレゾリューション(cr)を必要とする。
本研究では,crを含むレビューにおけるllmの性能を向上させるためのフレームワークを提案する。
性能改善は、改善されたモデルCR能力によるものと考えられる。
また、ALSCのCRに焦点を当てた新しいデータセットもリリースしています。
関連論文リスト
- RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques [59.861013614500024]
我々は,Large Language Models (LLMs) の批判能力を評価するために設計された新しいベンチマークを導入する。
通常、オープンループ方式で機能する既存のベンチマークとは異なり、我々のアプローチでは、批判から生成された修正の質を評価するクローズドループ手法を採用している。
論文 参考訳(メタデータ) (2025-01-24T13:48:10Z) - Enabling Scalable Oversight via Self-Evolving Critic [59.861013614500024]
SCRIT(Self-evolving CRITic)は、批評能力の真の自己進化を可能にするフレームワークである。
コントラストベースの自己批判によって生成される合成データのトレーニングによって自己改善する。
最大で10.3%の改善が達成されている。
論文 参考訳(メタデータ) (2025-01-10T05:51:52Z) - EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation [58.546205554954454]
臨界観測(EACO)によるMLLMのアライメント向上を提案する。
EACOは、経済的に5k画像のみを使用して、MLLMを自己生成の選好データで整列する。
EACOは幻覚全体の65.6%をHalusionBenchで減らし、MME-Cognitionで21.8%改善する。
論文 参考訳(メタデータ) (2024-12-06T09:59:47Z) - ConMe: Rethinking Evaluation of Compositional Reasoning for Modern VLMs [95.15814662348245]
構成推論(CR)は属性、関係、単語の順序の重要さを把握する。
近年の視覚言語モデル (VLM) は、そのような推論タスクにおいて顕著な習熟性を示している。
論文 参考訳(メタデータ) (2024-06-12T12:54:27Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
LVLM(Large Vision-Language Models)は、訓練済みの大規模言語モデル(LLM)と視覚モデルを統合することで、指導チューニングを通じて大幅に進歩した。
LVLMは、しばしば幻覚現象を示し、生成されたテキスト応答は言語的に妥当に見えるが、入力画像に矛盾する。
本稿では,候補応答を反復的に生成し,各応答に対する報酬を評価し,微調整のための選好データをキュレートすることで,モデルの自己改善を可能にするCalibrated Self-Rewarding(CSR)アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T14:30:33Z) - CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration [59.48235003469116]
データの増大はOOD性能を継続的に向上させることを示す。
また, CF拡張モデルのキャリブレーションが容易な場合, 重要度を割り当てる場合, エントロピーがはるかに低いことを示す。
論文 参考訳(メタデータ) (2023-09-14T16:16:40Z) - Towards Automated Classification of Code Review Feedback to Support
Analytics [4.423428708304586]
本研究の目的は,自動コードレビューコメント分類システムを開発することである。
コードコンテキスト、コメントテキスト、コードメトリクスのセットを活用した教師付き学習ベースのDNNモデルを訓練し、評価した。
提案手法はFregnanらのアプローチよりも18.7%高い精度を実現している。
論文 参考訳(メタデータ) (2023-07-07T21:53:20Z) - CRACT: Cascaded Regression-Align-Classification for Robust Visual
Tracking [97.84109669027225]
改良された提案改良モジュールCascaded Regression-Align- Classification (CRAC)を導入する。
CRACは多くのベンチマークで最先端のパフォーマンスを得る。
OTB-2015、UAV123、NfS、VOT-2018、TrackingNet、GOT-10k、LaSOTを含む7つのベンチマークの実験において、我々のCRACTは最先端の競合他社と比較して非常に有望な結果を示している。
論文 参考訳(メタデータ) (2020-11-25T02:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。