Grid Cell-Inspired Fragmentation and Recall for Efficient Map Building
- URL: http://arxiv.org/abs/2307.05793v3
- Date: Mon, 8 Jul 2024 15:04:55 GMT
- Title: Grid Cell-Inspired Fragmentation and Recall for Efficient Map Building
- Authors: Jaedong Hwang, Zhang-Wei Hong, Eric Chen, Akhilan Boopathy, Pulkit Agrawal, Ila Fiete,
- Abstract summary: We propose and apply the concept of Fragmentation-and-Recall (FARMap) in the mapping of large spaces.
Agents solve the mapping problem by building local maps via a surprisal-based clustering of space.
We demonstrate that FARMap replicates the fragmentation points observed in animal studies.
- Score: 29.630483662400444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Animals and robots navigate through environments by building and refining maps of space. These maps enable functions including navigation back to home, planning, search and foraging. Here, we use observations from neuroscience, specifically the observed fragmentation of grid cell map in compartmentalized spaces, to propose and apply the concept of Fragmentation-and-Recall (FARMap) in the mapping of large spaces. Agents solve the mapping problem by building local maps via a surprisal-based clustering of space, which they use to set subgoals for spatial exploration. Agents build and use a local map to predict their observations; high surprisal leads to a "fragmentation event" that truncates the local map. At these events, the recent local map is placed into long-term memory (LTM) and a different local map is initialized. If observations at a fracture point match observations in one of the stored local maps, that map is recalled (and thus reused) from LTM. The fragmentation points induce a natural online clustering of the larger space, forming a set of intrinsic potential subgoals that are stored in LTM as a topological graph. Agents choose their next subgoal from the set of near and far potential subgoals from within the current local map or LTM, respectively. Thus, local maps guide exploration locally, while LTM promotes global exploration. We demonstrate that FARMap replicates the fragmentation points observed in animal studies. We evaluate FARMap on complex procedurally-generated spatial environments and realistic simulations to demonstrate that this mapping strategy much more rapidly covers the environment (number of agent steps and wall clock time) and is more efficient in active memory usage, without loss of performance. https://jd730.github.io/projects/FARMap/
Related papers
- Tag Map: A Text-Based Map for Spatial Reasoning and Navigation with Large Language Models [15.454856838083511]
Large Language Models (LLM) have emerged as a tool for robots to generate task plans using common sense reasoning.
Recent works have shifted from explicit maps with fixed semantic classes to implicit open vocabulary maps.
We propose an explicit text-based map that can represent thousands of semantic classes while easily integrating with LLMs.
arXiv Detail & Related papers (2024-09-23T18:26:19Z) - PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching [42.74395278382559]
This paper introduces PRISM-TopoMap -- a topological mapping method that maintains a graph of locally aligned locations.
The proposed method involves learnable multimodal place recognition paired with the scan matching pipeline for localization and loop closure.
We conduct a broad experimental evaluation of the suggested approach in a range of photo-realistic environments and on a real robot.
arXiv Detail & Related papers (2024-04-02T06:25:16Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - Loopy-SLAM: Dense Neural SLAM with Loop Closures [53.11936461015725]
We introduce Loopy-SLAM that globally optimize poses and the dense 3D model.
We use frame-to-model tracking using a data-driven point-based submap generation method and trigger loop closures online by performing global place recognition.
Evaluation on the synthetic Replica and real-world TUM-RGBD and ScanNet datasets demonstrate competitive or superior performance in tracking, mapping, and rendering accuracy when compared to existing dense neural RGBD SLAM methods.
arXiv Detail & Related papers (2024-02-14T18:18:32Z) - Background Activation Suppression for Weakly Supervised Object
Localization and Semantic Segmentation [84.62067728093358]
Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels.
New paradigm has emerged by generating a foreground prediction map to achieve pixel-level localization.
This paper presents two astonishing experimental observations on the object localization learning process.
arXiv Detail & Related papers (2023-09-22T15:44:10Z) - Long-term Visual Map Sparsification with Heterogeneous GNN [47.12309045366042]
In this paper, we aim to overcome the environmental changes and reduce the map size at the same time by selecting points that are valuable to future localization.
Inspired by the recent progress in Graph Neural Network(GNN), we propose the first work that models SfM maps as heterogeneous graphs and predicts 3D point importance scores with a GNN.
Two novel supervisions are proposed: 1) a data-fitting term for selecting valuable points to future localization based on training queries; 2) a K-Cover term for selecting sparse points with full map coverage.
arXiv Detail & Related papers (2022-03-29T01:46:12Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z) - Supervised Topological Maps [0.76146285961466]
Controlling the internal representation space of a neural network is a desirable feature because it allows to generate new data in a supervised manner.
We will show how this can be achieved while building a low-dimensional mapping of the input stream, by deriving a generalized algorithm starting from Self Organizing Maps (SOMs)
arXiv Detail & Related papers (2020-08-14T14:30:16Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
This work introduces a novel self-enhancement method to harvest accurate object localization maps and object boundaries with only category labels as supervision.
In particular, the proposed Self-Enhancement Maps achieve the state-of-the-art localization accuracy of 54.88% on ILSVRC.
arXiv Detail & Related papers (2020-06-09T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.