論文の概要: Provably Faster Gradient Descent via Long Steps
- arxiv url: http://arxiv.org/abs/2307.06324v2
- Date: Thu, 13 Jul 2023 14:28:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-14 10:14:43.540415
- Title: Provably Faster Gradient Descent via Long Steps
- Title(参考訳): 長いステップを通したより高速なグラディエント染料
- Authors: Benjamin Grimmer
- Abstract要約: 短期的な目的値を増加させる長いステップは、長期的収束を確実に速くすることを示す。
勾配降下のより高速な$O(1/Tlog T)$レートを証明するための予想も、単純な数値検証と共に動機付けられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work establishes provably faster convergence rates for gradient descent
via a computer-assisted analysis technique. Our theory allows nonconstant
stepsize policies with frequent long steps potentially violating descent by
analyzing the overall effect of many iterations at once rather than the typical
one-iteration inductions used in most first-order method analyses. We show that
long steps, which may increase the objective value in the short term, lead to
provably faster convergence in the long term. A conjecture towards proving a
faster $O(1/T\log T)$ rate for gradient descent is also motivated along with
simple numerical validation.
- Abstract(参考訳): 本研究は, コンピュータ支援解析手法により, 勾配降下の収束速度を向上させる。
本理論は、多くの反復の全体的な効果を、ほとんどの一階法分析で使われる典型的な単文帰納法ではなく、一度に分析することにより、頻繁な長いステップでポリシーを段階化することを可能にする。
短期的に客観的な価値を高めるための長いステップは、長期的には確実により早く収束することを示している。
勾配降下のより高速な$O(1/T\log T)$レートを証明するための予想も、単純な数値検証と共に動機付けられる。
関連論文リスト
- Gradient Methods with Online Scaling [19.218484733179356]
オンライン学習による勾配に基づく手法の収束を加速する枠組みを提案する。
広範に使用される過勾配降下は勾配降下の収束により改善されることを示す。
論文 参考訳(メタデータ) (2024-11-04T05:04:18Z) - Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation [51.248784084461334]
我々はNesterov加速度アンダーホ条件の一般化版に対する新しい収束率を証明した。
本分析により, 従来の研究に比べて, 強い成長定数への依存度を$$$から$sqrt$に下げることができた。
論文 参考訳(メタデータ) (2024-04-03T00:41:19Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
本稿では,凸/凹凸 min-max 問題に対して,ほぼ最適収束率を許容する一階法を提案する。
我々の研究は、近点法の更新規則を精度良く近似できるという事実に基づいている。
論文 参考訳(メタデータ) (2023-01-10T12:18:47Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
我々は、勾配推定が末尾を持つ可能性のある一階アルゴリズムを用いたヒルベルト非最適化を考える。
本研究では, 勾配, 運動量, 正規化勾配勾配の収束を高確率臨界点に収束させることと, 円滑な損失に対する最もよく知られた繰り返しを示す。
論文 参考訳(メタデータ) (2021-06-28T00:17:01Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
我々は,非log-concaveとなる分布のクラスからサンプリングするために,勾配ランゲヴィンダイナミクス(SGLD)の新たな収束解析を行う。
我々のアプローチの核心は、補助的時間反転型マルコフ連鎖を用いたSGLDのコンダクタンス解析である。
論文 参考訳(メタデータ) (2020-10-19T15:23:18Z) - A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints [10.578409461429626]
本研究では、滑らかで強可変なゲームやイテレーションのための一階法に積分二次的制約理論を適用する。
我々は、負の運動量法(NM)に対して、既知の下界と一致する複雑性$mathcalO(kappa1.5)$で、初めて大域収束率を与える。
一段階のメモリを持つアルゴリズムでは,バッチ毎に1回だけ勾配を問合せすれば,高速化は不可能であることを示す。
論文 参考訳(メタデータ) (2020-09-23T20:02:00Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
本稿では,勾配降下(SGD)の軌跡を解析する。
我々はSGDが厳格なステップサイズポリシーのために1ドルでサドルポイント/マニフォールドを避けることを示す。
論文 参考訳(メタデータ) (2020-06-19T14:11:26Z) - Adaptive Gradient Methods Can Be Provably Faster than SGD after Finite
Epochs [25.158203665218164]
適応勾配法は有限時間後にランダムシャッフルSGDよりも高速であることを示す。
我々の知る限り、適応的勾配法は有限時間後にSGDよりも高速であることを示すのはこれが初めてである。
論文 参考訳(メタデータ) (2020-06-12T09:39:47Z) - Proximal Gradient Temporal Difference Learning: Stable Reinforcement
Learning with Polynomial Sample Complexity [40.73281056650241]
本稿では,真の勾配時間差学習アルゴリズムを設計・解析する原理的な方法として,近位勾配時間差学習を導入する。
本研究では, 従来の目的関数からではなく, 主目的関数から始めることによって, 勾配性TD強化学習法を公式に導出する方法を示す。
論文 参考訳(メタデータ) (2020-06-06T21:04:21Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。