論文の概要: Layered controller synthesis for dynamic multi-agent systems
- arxiv url: http://arxiv.org/abs/2307.06758v1
- Date: Thu, 13 Jul 2023 13:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-14 14:27:37.464808
- Title: Layered controller synthesis for dynamic multi-agent systems
- Title(参考訳): 動的マルチエージェントシステムのための層状コントローラ合成
- Authors: Emily Clement, Nicolas Perrin-Gilbert, Philipp Schlehuber-Caissier
- Abstract要約: 本稿では,多エージェント制御問題に対する階層的アプローチを3段階に分割する。
SWA-SMTソリューションは,ニューラルネットワーク制御ポリシ獲得を目的とした,最終段階の初期トレーニングデータセットとして使用しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a layered approach for multi-agent control problem,
decomposed into three stages, each building upon the results of the previous
one. First, a high-level plan for a coarse abstraction of the system is
computed, relying on parametric timed automata augmented with stopwatches as
they allow to efficiently model simplified dynamics of such systems. In the
second stage, the high-level plan, based on SMT-formulation, mainly handles the
combinatorial aspects of the problem, provides a more dynamically accurate
solution. These stages are collectively referred to as the SWA-SMT solver. They
are correct by construction but lack a crucial feature: they cannot be executed
in real time. To overcome this, we use SWA-SMT solutions as the initial
training dataset for our last stage, which aims at obtaining a neural network
control policy. We use reinforcement learning to train the policy, and show
that the initial dataset is crucial for the overall success of the method.
- Abstract(参考訳): 本稿では,複数エージェントの制御問題に対する階層的アプローチについて述べる。
第一に、システムの粗い抽象化のための高レベル計画が計算され、停止時計を付加したパラメトリックタイムドオートマトンに頼り、そのようなシステムの単純化されたダイナミクスを効率的にモデル化することができる。
第2段階では、SMT形式に基づく高レベルプランは、主に問題の組合せ的な側面を扱い、よりダイナミックに正確な解を提供する。
これらの段階をSWA-SMTソルバと呼ぶ。
それらは建設によって正しいが、重要な特徴が欠けている: リアルタイムでは実行できない。
これを解決するため、我々はSWA-SMTソリューションを、ニューラルネットワーク制御ポリシーの取得を目的とした、最終段階のトレーニングデータセットとして使用しています。
ポリシーをトレーニングするために強化学習を使い、最初のデータセットがメソッド全体の成功に不可欠であることを示します。
関連論文リスト
- Foundation Models to the Rescue: Deadlock Resolution in Connected Multi-Robot Systems [11.012092202226855]
接続型マルチエージェントロボットシステム(MRS)は、障害物環境下でデッドロックする傾向がある。
本稿では,大規模言語モデル (LLM) やテキスト・アンド・イメージモデル (VLM) をデッドロック解像度の高レベルプランナとして用いる可能性について検討する。
本稿では,基礎モデルに基づくハイレベルプランナが,MSSのリーダーをMSSのリーダーに割り当てることでデッドロックの解決を支援する階層的制御フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-09T16:03:26Z) - Analyzing and Improving the Training Dynamics of Diffusion Models [36.37845647984578]
一般的なADM拡散モデルアーキテクチャにおいて、不均一かつ非効率なトレーニングの原因をいくつか特定し、修正する。
この哲学の体系的な応用は、観測されたドリフトと不均衡を排除し、同じ計算複雑性でネットワークをかなり良くする。
論文 参考訳(メタデータ) (2023-12-05T11:55:47Z) - Verified Compositional Neuro-Symbolic Control for Stochastic Systems
with Temporal Logic Tasks [11.614036749291216]
自律エージェントのためのニューラルネットワーク(NN)コントローラを学ぶために、最近いくつかの方法が提案されている。
これらのアプローチにおける重要な課題は、しばしば安全保証が欠如しているか、提供された保証が現実的でないことである。
本稿では,訓練されたNNコントローラの時間的構成が存在するかどうかを確認することで,この問題に対処することを目的とする。
論文 参考訳(メタデータ) (2023-11-17T20:51:24Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
この研究は、低データ体制のための新しい教師なし事前学習ソリューションを提供する。
近年のPrompting技術の成功に触発されて,QEISモデルを強化した新しい事前学習手法を導入する。
実験結果から,本手法は3つのデータセット上でのいくつかのQEISモデルを大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-02-02T15:49:03Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Meta-Reinforcement Learning for Adaptive Control of Second Order Systems [3.131740922192114]
プロセス制御では、多くのシステムは類似しており、よく理解されているダイナミクスを持ち、メタ学習を通じて一般化可能なコントローラを作成することは可能であることを示唆している。
本稿では,メタ強化学習(meta-RL)制御戦略を定式化し,モデル構造などのトレーニングにおいて,既知のオフライン情報を活用する。
重要な設計要素は、トレーニング中にモデルベースの情報をオフラインで利用し、新しい環境と対話するためのモデルフリーのポリシー構造を維持することである。
論文 参考訳(メタデータ) (2022-09-19T18:51:33Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
本稿では,SAPIEN ManiSkill Challenge 2021: No Interaction Trackにおいて,以下の2つのトラックを対象としたシステムの概要と比較分析を行った。
No Interactionは、事前に収集された実証軌道からの学習ポリシーのターゲットを追跡する。
このトラックでは,タスクを一連のサブタスクに分解することで,高品質なオブジェクト操作をトリガするHuristic Rule-based Method (HRM) を設計する。
各サブタスクに対して、ロボットアームに適用可能なアクションを予測するために、単純なルールベースの制御戦略が採用されている。
論文 参考訳(メタデータ) (2022-06-13T16:20:42Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
本稿では,そのアーキテクチャと重みを動的に調整し,所望のタスク選択とリソース制約に適合させる制御可能なマルチタスクネットワークを提案する。
本稿では,タスク親和性と分岐正規化損失を利用した2つのハイパーネットの非交互トレーニングを提案し,入力の嗜好を取り入れ,適応重み付き木構造モデルを予測する。
論文 参考訳(メタデータ) (2022-03-28T17:56:40Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - The reinforcement learning-based multi-agent cooperative approach for
the adaptive speed regulation on a metallurgical pickling line [0.0]
提案手法は,基本アルゴリズムとしての数学的モデリングと協調型マルチエージェント強化学習システムを組み合わせたものである。
我々は、重工業における現実的なタスクに対して、Deep Q-Learningをどのように適用できるかを実証し、既存の自動化システムを大幅に改善した。
論文 参考訳(メタデータ) (2020-08-16T15:10:39Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。