論文の概要: Revisiting the DARPA Communicator Data using Conversation Analysis
- arxiv url: http://arxiv.org/abs/2307.06982v1
- Date: Thu, 13 Jul 2023 15:33:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 16:01:49.287052
- Title: Revisiting the DARPA Communicator Data using Conversation Analysis
- Title(参考訳): 会話分析を用いたDARPA通信データの再検討
- Authors: Peter Wallis
- Abstract要約: 本稿では, コンピュータシステムにおける「改善の機会」を, 「誓い言葉」の形で乱用を探すことによって識別するアプローチについて述べる。
その前提は、人間がコンピュータに対して制裁として誓うことであり、したがって、言葉を誓うことは、システムが本来あるべきように振る舞わない点を表す。
より大きなテキストコーパスに依存しない計算言語学には代替的な未来があることを実証したい。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The state of the art in human computer conversation leaves something to be
desired and, indeed, talking to a computer can be down-right annoying. This
paper describes an approach to identifying ``opportunities for improvement'' in
these systems by looking for abuse in the form of swear words. The premise is
that humans swear at computers as a sanction and, as such, swear words
represent a point of failure where the system did not behave as it should.
Having identified where things went wrong, we can work backward through the
transcripts and, using conversation analysis (CA) work out how things went
wrong. Conversation analysis is a qualitative methodology and can appear quite
alien - indeed unscientific - to those of us from a quantitative background.
The paper starts with a description of Conversation analysis in its modern
form, and then goes on to apply the methodology to transcripts of frustrated
and annoyed users in the DARPA Communicator project. The conclusion is that
there is at least one species of failure caused by the inability of the
Communicator systems to handle mixed initiative at the discourse structure
level. Along the way, I hope to demonstrate that there is an alternative future
for computational linguistics that does not rely on larger and larger text
corpora.
- Abstract(参考訳): 人間のコンピュータ会話における芸術の状況は、望ましいものを残している。
本稿では,これらのシステムにおける「改善のための機会」を,誓文の形で乱用を探すことによって識別するアプローチについて述べる。
その前提は、人間がコンピュータに対して制裁として誓うことであり、したがって、言葉を誓うことは、システムが本来あるべきように振る舞わない点を表す。
問題のある場所を特定できたら、書き起こしを遡って作業し、会話分析(CA)を使って、どのように問題が発生したかを調べることができます。
会話分析は定性的な方法論であり、定量的な背景から私たちにとって非常に異質な、実際非科学的に見える可能性がある。
この論文は、現在の形式での会話分析の説明から始まり、その後DARPAのコミュニケータープロジェクトにおける不満とイライラしたユーザの書き起こしにこの方法論を適用します。
結論として、コミュニケータシステムでは、談話構造レベルで混成イニシアチブを扱うことができないため、少なくとも1つの障害種が存在する。
その過程で、より大きなテキストコーパスに依存しない計算言語学の別の未来があることを証明したいと思います。
関連論文リスト
- Solving NLP Problems through Human-System Collaboration: A
Discussion-based Approach [98.13835740351932]
本研究の目的は,対話を通じて予測を議論・洗練するシステムのための,データセットと計算フレームワークを構築することである。
提案システムでは,自然言語推論タスクにおいて,最大25ポイントの精度向上が期待できることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:24:50Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - Speech Aware Dialog System Technology Challenge (DSTC11) [12.841429336655736]
タスク指向ダイアログモデリングのほとんどの研究は、テキスト入力に基づいている。
TTS-Verbatim: テキスト入力をTTSシステムを用いて音声波形に変換し, (b) ヒューマン・ヴァーバティム: ユーザ入力を動詞入力, (c) ヒューマン・パラフレーズ化: ユーザ入力をパラフレーズ化した。
論文 参考訳(メタデータ) (2022-12-16T20:30:33Z) - FCTalker: Fine and Coarse Grained Context Modeling for Expressive
Conversational Speech Synthesis [75.74906149219817]
Conversational Text-to-Speech (TTS) は、会話の文脈において、適切な言語的・感情的な韻律で発話を合成することを目的としている。
本稿では, 音声生成時に, 微細で粗い文脈依存性を同時に学習する, FCTalkerと呼ばれる新しい表現型会話型TSモデルを提案する。
論文 参考訳(メタデータ) (2022-10-27T12:20:20Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
我々は、生成会話ネットワークを使用して、自動的にデータを生成し、社会的会話エージェントを訓練する。
自動メトリクスと人的評価器を用いてTopicalChatのアプローチを評価し、10%のシードデータで100%のデータを使用するベースラインに近いパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-15T21:46:39Z) - Hierarchical Summarization for Longform Spoken Dialog [1.995792341399967]
音声対話の広汎性にもかかわらず、自動音声理解と品質情報抽出は依然として著しく貧弱である。
テキストを理解することに比べ、聴覚コミュニケーションは、話者の拡散、非公式な散文スタイル、構造の欠如など、多くの追加的な課題を生んでいる。
本稿では、2段階のASRとテキスト要約パイプラインを提案し、これらの音声認識課題を解決するためのセマンティックセグメンテーションとマージアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-21T23:31:31Z) - Introducing the Talk Markup Language (TalkML):Adding a little social
intelligence to industrial speech interfaces [0.0]
自然言語の理解は、AI研究の最も残念な失敗の1つだ。
本稿では、他の分野からアイデアを取り入れて実装した方法について述べる。
論文 参考訳(メタデータ) (2021-05-24T14:25:35Z) - Towards Data Distillation for End-to-end Spoken Conversational Question
Answering [65.124088336738]
音声対話型質問応答タスク(SCQA)を提案する。
SCQAは,音声発話とテキストコーパスから複雑な対話の流れをモデル化することを目的としている。
我々の主な目的は、音声とテキストの両方で会話的な質問に対処するQAシステムを構築することである。
論文 参考訳(メタデータ) (2020-10-18T05:53:39Z) - Contextual Dialogue Act Classification for Open-Domain Conversational
Agents [10.576497782941697]
会話におけるユーザ発話の一般的な意図を分類することは、会話エージェントのための自然言語理解(NLU)の重要なステップである。
本稿では,文脈対話行為分類のための簡易かつ効果的な深層学習手法であるCDAC(Contextual Dialogue Act)を提案する。
我々は、人-機械対話における対話行動を予測するために、トランスファーラーニングを用いて人間-機械対話で訓練されたモデルを適用する。
論文 参考訳(メタデータ) (2020-05-28T06:48:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。