論文の概要: DISPEL: Domain Generalization via Domain-Specific Liberating
- arxiv url: http://arxiv.org/abs/2307.07181v2
- Date: Sat, 29 Jul 2023 02:27:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 20:12:53.907250
- Title: DISPEL: Domain Generalization via Domain-Specific Liberating
- Title(参考訳): DISPEL: ドメイン特化解放によるドメインの一般化
- Authors: Chia-Yuan Chang, Yu-Neng Chuang, Guanchu Wang, Mengnan Du, Zou Na
- Abstract要約: ドメインの一般化は、限られたソースドメインでのみトレーニングすることで、目に見えないテストドメインでうまく機能するモデルを学ぶことを目的としています。
本研究では,DomaIn-SPEcific Liberating (DISPEL)を提案する。
- 参考スコア(独自算出の注目度): 9.742101353506515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization aims to learn a generalization model that can perform
well on unseen test domains by only training on limited source domains.
However, existing domain generalization approaches often bring in
prediction-irrelevant noise or require the collection of domain labels. To
address these challenges, we consider the domain generalization problem from a
different perspective by categorizing underlying feature groups into
domain-shared and domain-specific features. Nevertheless, the domain-specific
features are difficult to be identified and distinguished from the input data.
In this work, we propose DomaIn-SPEcific Liberating (DISPEL), a post-processing
fine-grained masking approach that can filter out undefined and
indistinguishable domain-specific features in the embedding space.
Specifically, DISPEL utilizes a mask generator that produces a unique mask for
each input data to filter domain-specific features. The DISPEL framework is
highly flexible to be applied to any fine-tuned models. We derive a
generalization error bound to guarantee the generalization performance by
optimizing a designed objective loss. The experimental results on five
benchmarks demonstrate DISPEL outperforms existing methods and can further
generalize various algorithms.
- Abstract(参考訳): ドメイン一般化(domain generalization)は、限られたソースドメインのみをトレーニングすることで、未発見のテストドメインでうまく機能する一般化モデルを学ぶことを目的としている。
しかし、既存のドメイン一般化アプローチは、しばしば予測不能なノイズをもたらすか、ドメインラベルの収集を必要とする。
これらの課題に対処するために、基礎となる特徴群をドメイン共有機能とドメイン固有機能に分類することで、異なる視点からドメイン一般化問題を考察する。
それでも、ドメイン固有の特徴は、入力データと区別することが困難である。
本研究では,埋め込み空間における未定義かつ識別不能なドメイン特有な特徴をフィルタする,処理後の細粒度マスキング手法であるdomain-specific liberating (dispel)を提案する。
具体的には、disPELは、各入力データに固有のマスクを生成するマスクジェネレータを使用して、ドメイン固有の特徴をフィルタリングする。
DISPELフレームワークは、どの微調整モデルにも非常に柔軟に適用できる。
我々は,設計対象の損失を最適化することにより,一般化性能を保証するための一般化誤差を導出する。
5つのベンチマーク実験の結果は、DIPSELが既存の手法より優れており、様々なアルゴリズムをさらに一般化できることを示している。
関連論文リスト
- Feature-Space Semantic Invariance: Enhanced OOD Detection for Open-Set Domain Generalization [10.38552112657656]
本稿では、FSI(Feature-space Semantic Invariance)を導入して、オープンセット領域の一般化のための統一的なフレームワークを提案する。
FSIは機能領域内の異なるドメイン間のセマンティック一貫性を維持しており、見えないドメイン内のOODインスタンスをより正確に検出することができる。
また、新しいドメインスタイルやクラスラベルで合成データを生成するために生成モデルを採用し、モデルロバスト性を高めます。
論文 参考訳(メタデータ) (2024-11-11T21:51:45Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
因果性は機械学習と組み合わせて、ドメインの一般化のための堅牢な表現を生成する。
我々は、実証データ分布を活用して、ドメインの一般化可能なポリシーの因果的特徴を発見するために、異なる試みを行っている。
DIGICと呼ばれる新しいフレームワークを設計し、実演データ分布から専門家行動の直接的な原因を見出すことにより因果的特徴を識別する。
論文 参考訳(メタデータ) (2024-02-29T07:09:01Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
ドメインの一般化は、モデルを目に見えないターゲットのドメインに安全に転送することを目的としています。
AdaODMは、異なるターゲットドメインに対するテスト時にソースモデルを適応的に修正する。
その結果,AdaODMは未確認領域の一般化能力を安定的に向上することがわかった。
論文 参考訳(メタデータ) (2022-08-03T11:51:11Z) - Localized Adversarial Domain Generalization [83.4195658745378]
対数領域の一般化は、領域の一般化に対する一般的なアプローチである。
空間コンパクト性維持(LADG)を用いた局所対向領域の一般化を提案する。
我々はWilds DGベンチマークで包括的な実験を行い、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2022-05-09T08:30:31Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain Generalizable (DG) Person Re-identification (ReID)は、トレーニング時に対象のドメインデータにアクセスすることなく、見えないドメインをまたいでテストすることを目的としている。
本稿では,DG ReID のための OThers' Aggregation (META) を用いた Mimicking Embedding という新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T08:06:50Z) - Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification [81.30327016286009]
一般化可能なRe-IDのための適応型ドメイン固有正規化手法(AdsNorm)を提案する。
本研究では,一般化可能人物 Re-ID に対する適応領域特異的正規化手法 (AdsNorm) を提案する。
論文 参考訳(メタデータ) (2021-05-07T02:54:55Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
ドメイン一般化(DG)に基づく対スプーフィングアプローチは、予期せぬシナリオの堅牢性のために注目を集めています。
ドメインダイナミック調整メタラーニング(D2AM)についてドメインラベルを使わずに提案する。
この制限を克服するため,ドメインダイナミック調整メタラーニング(D2AM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T06:04:59Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
ドメインフリードメイン一般化(DFDG)は、目に見えないテストドメインでより良い一般化性能を実現するモデル非依存の方法である。
DFDGは新しい戦略を用いてドメイン不変なクラス差別的特徴を学習する。
時系列センサと画像分類公開データセットの両方で競合性能を得る。
論文 参考訳(メタデータ) (2021-02-17T17:46:06Z) - Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization [27.338573739304604]
ドメイン内および外部の一般化性能を改善するモデルである一般化のためのドメイン固有マスクを紹介する。
ドメインの一般化のために、ゴールはソースドメインの集合から学び、見えないターゲットドメインに最もよく一般化する単一のモデルを作成することである。
本研究では,PACSとDomainNetの両面において,単純なベースラインと最先端の手法と比較して,競争力のある性能を示す。
論文 参考訳(メタデータ) (2020-08-28T20:39:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。