論文の概要: Unbiased Image Synthesis via Manifold-Driven Sampling in Diffusion
Models
- arxiv url: http://arxiv.org/abs/2307.08199v2
- Date: Fri, 18 Aug 2023 03:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 22:54:32.591037
- Title: Unbiased Image Synthesis via Manifold-Driven Sampling in Diffusion
Models
- Title(参考訳): 拡散モデルにおけるマニフォールド駆動サンプリングによる不偏像合成
- Authors: Xingzhe Su, Yi Ren, Wenwen Qiang, Zeen Song, Hang Gao, Fengge Wu,
Changwen Zheng
- Abstract要約: 拡散モデルは、高品質な画像を生成することができる強力な生成モデルのクラスである。
データバイアスに関連する問題に直面し、特定のデータモードを優先する。
本稿では,拡散モデルにおけるデータバイアスを軽減するために,多様体誘導を利用した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 24.610977739714134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are a potent class of generative models capable of producing
high-quality images. However, they can face challenges related to data bias,
favoring specific modes of data, especially when the training data does not
accurately represent the true data distribution and exhibits skewed or
imbalanced patterns. For instance, the CelebA dataset contains more female
images than male images, leading to biased generation results and impacting
downstream applications. To address this issue, we propose a novel method that
leverages manifold guidance to mitigate data bias in diffusion models. Our key
idea is to estimate the manifold of the training data using an unsupervised
approach, and then use it to guide the sampling process of diffusion models.
This encourages the generated images to be uniformly distributed on the data
manifold without altering the model architecture or necessitating labels or
retraining. Theoretical analysis and empirical evidence demonstrate the
effectiveness of our method in improving the quality and unbiasedness of image
generation compared to standard diffusion models.
- Abstract(参考訳): 拡散モデルは高品質な画像を生成することができる強力な生成モデルのクラスである。
しかし、データバイアスに関連する課題に直面し、特にトレーニングデータが真のデータ分布を正確に表現せず、歪んだパターンや不均衡パターンを示す場合、特定のデータモードを好む。
例えば、CelebAデータセットは男性画像よりも女性画像が多く含まれており、バイアスのある生成結果と下流アプリケーションに影響を与える。
そこで本研究では,拡散モデルにおけるデータバイアスを緩和するために多様体誘導を利用する新しい手法を提案する。
我々のキーとなる考え方は、教師なしアプローチを用いてトレーニングデータの多様体を推定し、拡散モデルのサンプリングプロセスを導くことである。
これにより生成されたイメージは、モデルアーキテクチャを変更したり、ラベルを変更したり、再トレーニングしたりすることなく、データ多様体上に均一に分散されるようになる。
理論的解析と実証的証拠は, 標準的な拡散モデルと比較して画像の画質と不偏性を改善する方法の有効性を示した。
関連論文リスト
- Debiasing Classifiers by Amplifying Bias with Latent Diffusion and Large Language Models [9.801159950963306]
DiffuBiasはテキスト・画像生成のための新しいパイプラインであり、バイアス・コンフリクト・サンプルを生成することで分類器の堅牢性を高める。
DrouBiasは、安定拡散モデルを活用する最初のアプローチである。
総合実験により,DiffuBiasがベンチマークデータセット上で最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-11-25T04:11:16Z) - DiffInject: Revisiting Debias via Synthetic Data Generation using Diffusion-based Style Injection [9.801159950963306]
DiffInject(ディフインジェクション)は,事前学習した拡散モデルを用いて,合成バイアス競合サンプルを増強する強力な手法である。
私たちのフレームワークでは、バイアスタイプやラベル付けに関する明確な知識は必要ありません。
論文 参考訳(メタデータ) (2024-06-10T09:45:38Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Large-scale Reinforcement Learning for Diffusion Models [30.164571425479824]
テキストと画像の拡散モデルは、Webスケールのテキストと画像のトレーニングペアから生じる暗黙のバイアスに影響を受けやすい。
強化学習(Reinforcement Learning, RL)を用いて, 拡散モデルの改善に有効なスケーラブルアルゴリズムを提案する。
提案手法は,従来の拡散モデルと人間の嗜好を整合させる手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-20T08:10:43Z) - IBADR: an Iterative Bias-Aware Dataset Refinement Framework for
Debiasing NLU models [52.03761198830643]
IBADR(Iterative Bias-Aware dataset Refinement framework)を提案する。
まず、プール内のサンプルのバイアス度を定量化するために浅いモデルを訓練する。
次に、各サンプルにバイアス度を表すバイアス指標をペアにして、これらの拡張サンプルを使用してサンプルジェネレータを訓練する。
このようにして、このジェネレータは、バイアスインジケータとサンプルの対応関係を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-11-01T04:50:38Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - Fair GANs through model rebalancing for extremely imbalanced class
distributions [5.463417677777276]
本稿では,既存のバイアス付きGANからGAN(unbiased generative adversarial Network)を構築するためのアプローチを提案する。
Flickr Faces High Quality (FFHQ) データセットを用いて、人種的公平性をトレーニングしながら、StyleGAN2モデルの結果を示す。
また,不均衡なCIFAR10データセットに適用することで,我々のアプローチをさらに検証する。
論文 参考訳(メタデータ) (2023-08-16T19:20:06Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
拡散モデルは、合成データ生成と画像編集アプリケーションでますます人気がある。
本研究では, 性別, 人種, 年齢などの属性に関して, 拡散型顔生成モデルにおけるバイアスの存在について検討する。
本研究は,GAN(Generative Adversarial Network)とGAN(Generative Adversarial Network)をベースとした顔生成モデルにおいて,データセットサイズが属性組成および知覚品質に与える影響について検討する。
論文 参考訳(メタデータ) (2023-05-10T18:22:31Z) - Class-Balancing Diffusion Models [57.38599989220613]
クラスバランシング拡散モデル(CBDM)は、分散調整正規化器をソリューションとして訓練する。
提案手法は,CIFAR100/CIFAR100LTデータセットで生成結果をベンチマークし,下流認識タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-30T20:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。