Spatial-spectral mapping to prepare the frequency entangled qudits
- URL: http://arxiv.org/abs/2307.08583v1
- Date: Mon, 17 Jul 2023 15:54:05 GMT
- Title: Spatial-spectral mapping to prepare the frequency entangled qudits
- Authors: Zi-Xiang Yang, Zi-Qi Zeng, Ying Tian, Shun Wang, Ryosuke Shimizu,
Hao-Yu Wu, Shilong Liu, Rui-Bo Jin
- Abstract summary: Entangled qudits play an important role in the study of quantum information.
How to prepare entangled qudits in an efficient and easy-to-operate manner is still a challenge in quantum technology.
- Score: 4.5526899359065744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entangled qudits, the high-dimensional entangled states, play an important
role in the study of quantum information. How to prepare entangled qudits in an
efficient and easy-to-operate manner is still a challenge in quantum
technology. Here, we demonstrate a method to engineer frequency entangled
qudits in a spontaneous parametric downconversion process. The proposal employs
an angle-dependent phase-matching condition in a nonlinear crystal, which forms
a classical-quantum mapping between the spatial (pump) and spectral (biphotons)
degrees of freedom. In particular, the pump profile is separated into several
bins in the spatial domain, and thus shapes the down-converted biphotons into
discrete frequency modes in the joint spectral space. Our approach provides a
feasible and efficient method to prepare a high-dimensional frequency entangled
state. As an experimental demonstration, we generate a three-dimensional
entangled state by using a homemade variable slit mask.
Related papers
- High-dimensional maximally entangled photon pairs in parametric down-conversion [0.0]
Laguerre-Gaussian modes, which carry orbital angular momentum (OAM), are commonly exploited to engineer high-dimensional entangled quantum states.
For Hilbert spaces with d>2, maximally entangled states (MESs) help to improve the capacity and security of quantum communication protocols.
We formalize how the spatial distribution of the pump beam and the nonlinear profile of the crystal can be simultaneously utilized to generate MES.
arXiv Detail & Related papers (2024-07-12T14:13:04Z) - Few-Body Quantum Chaos, Localization, and Multi-Photon Entanglement in Optical Synthetic Frequency Dimension [12.86091921421344]
We propose a novel approach to generate controllable frequency-entangled photons by using the concept of synthetic frequency dimension in an optical system.
This work is the first to explore rich and controllable quantum phases beyond single particle in a synthetic dimension.
arXiv Detail & Related papers (2024-06-11T15:14:21Z) - Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing [9.095723333008811]
We introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function.
Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns.
arXiv Detail & Related papers (2024-06-07T14:37:45Z) - Frequency-domain engineering of bright squeezed vacuum for
continuous-variable quantum information [0.0]
Multimode bright squeezed vacuum is a non-classical state of light hosting a macroscopic photon number.
We propose the design of quantum correlations over two-dimensional lattice geometries that are all-optically controlled.
arXiv Detail & Related papers (2023-05-17T14:36:41Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Photon pumping in a weakly-driven quantum cavity-spin system [0.0]
In the strong-drive adiabatic limit, a quantized frequency conversion of photons is expected as the temporal analog of the Hall current.
We numerically establish a novel photon pumping phenomenon in the experimentally accessible nonadiabatic driving regime.
arXiv Detail & Related papers (2021-04-13T18:00:02Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.