Telecom networking with a diamond quantum memory
- URL: http://arxiv.org/abs/2307.08619v1
- Date: Mon, 17 Jul 2023 16:36:33 GMT
- Title: Telecom networking with a diamond quantum memory
- Authors: Eric Bersin, Madison Sutula, Yan Qi Huan, Aziza Suleymanzade, Daniel
R. Assumpcao, Yan-Cheng Wei, Pieter-Jan Stas, Can M. Knaut, Erik N. Knall,
Carsten Langrock, Neil Sinclair, Ryan Murphy, Ralf Riedinger, Matthew Yeh, C.
J. Xin, Saumil Bandyopadhyay, Denis D. Sukachev, Bartholomeus Machielse,
David S. Levonian, Mihir K. Bhaskar, Scott Hamilton, Hongkun Park, Marko
Lon\v{c}ar, Martin M. Fejer, P. Benjamin Dixon, Dirk R. Englund, and Mikhail
D. Lukin
- Abstract summary: We demonstrate low-noise, bidirectional quantum frequency conversion that enables a solid-state quantum memory to directly interface with telecom-band systems.
Results demonstrate the viability of SiV quantum memories integrated with telecom-band systems for scalable quantum networking applications.
- Score: 6.314478037810617
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Practical quantum networks require interfacing quantum memories with existing
channels and systems that operate in the telecom band. Here we demonstrate
low-noise, bidirectional quantum frequency conversion that enables a
solid-state quantum memory to directly interface with telecom-band systems. In
particular, we demonstrate conversion of visible-band single photons emitted
from a silicon-vacancy (SiV) center in diamond to the telecom O-band,
maintaining low noise ($g^2(0)<0.1$) and high indistinguishability
($V=89\pm8\%$). We further demonstrate the utility of this system for quantum
networking by converting telecom-band time-bin pulses, sent across a lossy and
noisy 50 km deployed fiber link, to the visible band and mapping their quantum
states onto a diamond quantum memory with fidelity $\mathcal{F}=87\pm 2.5 \% $.
These results demonstrate the viability of SiV quantum memories integrated with
telecom-band systems for scalable quantum networking applications.
Related papers
- Chip-to-chip quantum photonic controlled-NOT gate teleportation [4.639977636738577]
We implement high fidelity quantum controlled-NOT (CNOT) gate teleportation with state-of-the-art silicon photonic integrated circuits.
The CNOT gate is teleported between two remote quantum nodes connected by the single-mode optical fiber.
These results advance the realization of large-scale and practical quantum networks with photonic integrated circuits.
arXiv Detail & Related papers (2024-11-23T04:22:33Z) - Hybrid Quantum Repeaters with Ensemble-based Quantum Memories and Single-spin Photon Transducers [13.607316611508045]
We propose to combine two promising hardware platforms in a hybrid quantum repeater architecture.
We describe how a single Rubidium (Rb) atom coupled to nanophotonic resonators can function as a high-rate, telecom-visible entangled photon source.
Our analysis shows that by employing up to 9 repeater stations, each equipped with two Tm-memories capable of holding up to 625 storage modes, along with four single Rb atoms, one can reach a quantum communication rate of about 10 secret bits per second across distances of up to 1000 km.
arXiv Detail & Related papers (2024-01-22T22:56:50Z) - Entanglement of Nanophotonic Quantum Memory Nodes in a Telecom Network [0.0]
We demonstrate entanglement of two nuclear spin memories through 40 km spools of low-loss fiber and a 35 km long fiber loop deployed in the Boston area urban environment.
By integrating efficient bi-directional quantum frequency conversion of photonic communication qubits to telecom frequencies (1350 nm), we demonstrate entanglement of two nuclear spin memories.
arXiv Detail & Related papers (2023-10-02T16:23:08Z) - Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum
Processor [1.0614955682118588]
Large-scale quantum computation faces the challenge of efficiently generating entanglement between many qubits.
Here we propose and demonstrate a novel, on-chip photon exchange network.
We show long-range qubit-qubit interactions between qubits with a maximum spatial separation of $9.2textcm$ along a meandered bus resonator.
arXiv Detail & Related papers (2023-03-06T21:28:48Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.