Enforcing 3D Topological Constraints in Composite Objects via Implicit Functions
- URL: http://arxiv.org/abs/2307.08716v2
- Date: Wed, 09 Oct 2024 13:56:08 GMT
- Title: Enforcing 3D Topological Constraints in Composite Objects via Implicit Functions
- Authors: Hieu Le, Jingyi Xu, Nicolas Talabot, Jiancheng Yang, Pascal Fua,
- Abstract summary: Medical applications often require accurate 3D representations of complex organs with multiple parts, such as the heart and spine.
This paper introduces a novel approach to enforce topological constraints in 3D object reconstruction using deep implicit signed distance functions.
We propose a sampling-based technique that effectively checks and enforces topological constraints between 3D shapes by evaluating signed distances at randomly sampled points throughout the volume.
- Score: 60.56741715207466
- License:
- Abstract: Medical applications often require accurate 3D representations of complex organs with multiple parts, such as the heart and spine. Their individual parts must adhere to specific topological constraints to ensure proper functionality. Yet, there are very few mechanisms in the deep learning literature to achieve this goal. This paper introduces a novel approach to enforce topological constraints in 3D object reconstruction using deep implicit signed distance functions. Our method focuses on heart and spine reconstruction but is generalizable to other applications. We propose a sampling-based technique that effectively checks and enforces topological constraints between 3D shapes by evaluating signed distances at randomly sampled points throughout the volume. We demonstrate it by refining 3D segmentations obtained from the nn-UNet architecture.
Related papers
- Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
arXiv Detail & Related papers (2024-10-16T16:36:23Z) - Scalar Function Topology Divergence: Comparing Topology of 3D Objects [21.49200381462702]
We propose a new topological tool for computer vision - Scalar Function Topology Divergence (SFTD)
SFTD measures the dissimilarity of multi-scale topology between sublevel sets of two functions having a common domain.
The proposed tool provides useful visualizations depicting areas where functions have topological dissimilarities.
arXiv Detail & Related papers (2024-07-11T10:18:54Z) - NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints.
Existing methods often decompose 3D shapes into a sequence of localized components, treating each element in isolation.
We introduce a novel spatial-aware 3D shape generation framework that leverages 2D plane representations for enhanced 3D shape modeling.
arXiv Detail & Related papers (2024-03-27T04:09:34Z) - Self-Supervised Representation Learning for Nerve Fiber Distribution
Patterns in 3D-PLI [36.136619420474766]
3D-PLI is a microscopic imaging technique that enables insights into the fine-grained organization of myelinated nerve fibers with high resolution.
Best practices for observer-independent characterization of fiber architecture in 3D-PLI are not yet available.
We propose the application of a fully data-driven approach to characterize nerve fiber architecture in 3D-PLI images using self-supervised representation learning.
arXiv Detail & Related papers (2024-01-30T17:49:53Z) - Learning Implicit Functions for Dense 3D Shape Correspondence of Generic
Objects [21.93671761497348]
A novel implicit function produces a probabilistic embedding to represent each 3D point in a part embedding space.
We implement dense correspondence through an inverse function mapping from the part embedding vector to a corresponded 3D point.
Our algorithm can automatically generate a confidence score indicating whether there is a correspondence on the target shape.
arXiv Detail & Related papers (2022-12-29T11:57:47Z) - 3D Textured Shape Recovery with Learned Geometric Priors [58.27543892680264]
This technical report presents our approach to address limitations by incorporating learned geometric priors.
We generate a SMPL model from learned pose prediction and fuse it into the partial input to add prior knowledge of human bodies.
We also propose a novel completeness-aware bounding box adaptation for handling different levels of scales.
arXiv Detail & Related papers (2022-09-07T16:03:35Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
This paper introduces a novel framework called DTNet for 3D mesh reconstruction and generation via Disentangled Topology.
Our method is able to produce high-quality meshes, particularly with diverse topologies, as compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-06-10T08:32:57Z) - Improving 3D Object Detection with Channel-wise Transformer [58.668922561622466]
We propose a two-stage 3D object detection framework (CT3D) with minimal hand-crafted design.
CT3D simultaneously performs proposal-aware embedding and channel-wise context aggregation.
It achieves the AP of 81.77% in the moderate car category on the KITTI test 3D detection benchmark.
arXiv Detail & Related papers (2021-08-23T02:03:40Z) - Learning Implicit Functions for Topology-Varying Dense 3D Shape
Correspondence [21.93671761497348]
The goal of this paper is to learn dense 3D shape correspondence for topology-varying objects in an unsupervised manner.
Our novel implicit function produces a part embedding vector for each 3D point.
We implement dense correspondence through an inverse function mapping from the part embedding to a corresponded 3D point.
arXiv Detail & Related papers (2020-10-23T11:52:06Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.