Shapiro steps in driven atomic Josephson junctions
- URL: http://arxiv.org/abs/2307.08743v2
- Date: Tue, 2 Jul 2024 10:26:03 GMT
- Title: Shapiro steps in driven atomic Josephson junctions
- Authors: Vijay Pal Singh, Juan Polo, Ludwig Mathey, Luigi Amico,
- Abstract summary: We study driven atomic Josephson junctions realized by coupling two two-dimensional atomic clouds with a tunneling barrier.
By moving the barrier at a constant velocity, dc and ac Josephson regimes are characterized by a zero and nonzero atomic density difference across the junction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study driven atomic Josephson junctions realized by coupling two two-dimensional atomic clouds with a tunneling barrier. By moving the barrier at a constant velocity, dc and ac Josephson regimes are characterized by a zero and nonzero atomic density difference across the junction, respectively. Here, we monitor the dynamics resulting in the system when, in addition to the above constant velocity protocol, the position of the barrier is periodically driven. We demonstrate that the time-averaged particle imbalance features a step-like behavior that is the analog of Shapiro steps observed in driven superconducting Josephson junctions. The underlying dynamics reveals an intriguing interplay of the vortex and phonon excitations, where Shapiro steps are induced via suppression of vortex growth. We study the system with a classical-field dynamics method, and benchmark our findings with a driven circuit dynamics.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Exceptional point and hysteresis trajectories in cold Rydberg atomic gases [33.90303571473806]
Long-range interactions induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics.
Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases.
arXiv Detail & Related papers (2024-08-06T11:35:06Z) - Observation of Momentum Space Josephson Effects [0.0]
The momentum space Josephson effect describes the supercurrent flow between weakly coupled Bose-Einstein condensates.
We experimentally observe this exotic phenomenon using a BEC with Raman-induced spin-orbit coupling.
Measurement of the Josephson plasma frequency gives the Bogoliubov zero quasimomentum gap, which determines the mass of the corresponding pseudo-Goldstone mode.
arXiv Detail & Related papers (2024-04-19T19:42:08Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - The Josephson junction as a quantum engine [44.56439370306859]
Cooper pairs in superconducting electrodes of a Josephson junction (JJ) as an open system, coupled via Andreev scattering to external baths of electrons.
Disequilibrium between the baths generates the direct-current bias applied to the JJ.
We argue that this picture of the JJ as a quantum engine resolves open questions about the Josephson effect as an irreversible process and could open new perspectives in quantum thermodynamics and in the theory of dynamical systems.
arXiv Detail & Related papers (2023-02-09T16:51:39Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Classical route to ergodicity and scarring phenomena in a two-component
Bose-Josephson junction [0.29360071145551064]
We consider a Bose-Josephson junction formed by a binary mixture of ultracold atoms.
We show a rich variety of Josephson dynamics and transitions between them.
The signature of underlying classicality is revealed from the entanglement spectrum.
arXiv Detail & Related papers (2022-04-26T16:32:46Z) - dc to ac Josephson transition in a dc atom superconducting quantum
interference device [0.0]
We analyze the effect of the barrier motion on the Bose-Hubbard Hamiltonian of a ring-shaped Bose-Einstein condensate interrupted by a pair of Josephson junctions.
Such an effect is also shown to modify the Heisenberg equation of motion of the boson field operator.
arXiv Detail & Related papers (2020-08-02T17:34:11Z) - Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions [72.46695228124449]
We study a one-dimensional polaronic topological superconductor with phonon-dressed $p$-wave pairing.
We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior.
arXiv Detail & Related papers (2020-06-24T07:32:51Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Josephson junction dynamics in a two-dimensional ultracold Bose gas [0.0]
We investigate the scaling of the critical current of Josephson junction dynamics across a barrier potential in a 2D Bose gas.
We derive an analytical estimate for the critical current, which predicts the BKT scaling.
We show the damping of the supercurrent due to phonon excitations in the bulk, and the nucleation of vortex-antivortex pairs in the junction.
arXiv Detail & Related papers (2020-02-19T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.