Operator Guidance Informed by AI-Augmented Simulations
- URL: http://arxiv.org/abs/2307.08810v1
- Date: Mon, 17 Jul 2023 19:56:09 GMT
- Title: Operator Guidance Informed by AI-Augmented Simulations
- Authors: Samuel J. Edwards and Michael Levine
- Abstract summary: This paper will present a multi-fidelity, data-adaptive approach with a Long Short-Term Memory (LSTM) neural network to estimate ship response statistics in bimodal, bidirectional seas.
The study will employ a fast low-fidelity, volume-based tool SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper will present a multi-fidelity, data-adaptive approach with a Long
Short-Term Memory (LSTM) neural network to estimate ship response statistics in
bimodal, bidirectional seas. The study will employ a fast low-fidelity,
volume-based tool SimpleCode and a higher-fidelity tool known as the Large
Amplitude Motion Program (LAMP). SimpleCode and LAMP data were generated by
common bi-modal, bi-directional sea conditions in the North Atlantic as
training data. After training an LSTM network with LAMP ship motion response
data, a sample route was traversed and randomly sampled historical weather was
input into SimpleCode and the LSTM network, and compared against the higher
fidelity results.
Related papers
- Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.
multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.
Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - Data-Driven Extreme Response Estimation [0.0]
A method to rapidly estimate extreme ship response events is developed in this paper.
The method involves training by a Long Short-Term Memory (LSTM) neural network to correct a lower-fidelity hydrodynamic model to the level of a higher-fidelity simulation.
More focus is placed on larger responses by isolating the time-series near peak events and training on only the shorter time-series around the large event.
arXiv Detail & Related papers (2025-03-27T16:03:46Z) - SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBa is an architecture designed to scale up parameters in deep RL by injecting a simplicity bias.
By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved.
arXiv Detail & Related papers (2024-10-13T07:20:53Z) - ConvLSTMTransNet: A Hybrid Deep Learning Approach for Internet Traffic Telemetry [0.0]
We present a novel hybrid deep learning model, named ConvLSTMTransNet, designed for time series prediction.
Our findings demonstrate that ConvLSTMTransNet significantly outperforms the baseline models by approximately 10% in terms of prediction accuracy.
arXiv Detail & Related papers (2024-09-20T03:12:57Z) - Beam Prediction based on Large Language Models [51.45077318268427]
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss.
Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization.
In this letter, we use large language models (LLMs) to improve the robustness of beam prediction.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals [2.0650230600617534]
The proposed model exploits multiple representations of the wireless signal as inputs to the network.
An attention layer is used after the BiLSTM layer to emphasize the important temporal features.
The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%.
arXiv Detail & Related papers (2024-08-14T01:17:19Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - A Novel Approach For Analysis of Distributed Acoustic Sensing System
Based on Deep Transfer Learning [0.0]
Convolutional neural networks are highly capable tools for extracting spatial information.
Long-short term memory (LSTM) is an effective instrument for processing sequential data.
VGG-16 architecture in our framework manages to obtain 100% classification accuracy in 50 trainings.
arXiv Detail & Related papers (2022-06-24T19:56:01Z) - Network Level Spatial Temporal Traffic State Forecasting with Hierarchical Attention LSTM (HierAttnLSTM) [0.0]
This paper leverages diverse traffic state datasets from the Caltrans Performance Measurement System (PeMS) hosted on the open benchmark.
We integrate cell and hidden states from low-level to high-level Long Short-Term Memory (LSTM) networks with an attention pooling mechanism.
The developed hierarchical structure is designed to account for dependencies across different time scales, capturing the spatial-temporal correlations of network-level traffic states.
arXiv Detail & Related papers (2022-01-15T05:25:03Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values [23.504633202965376]
We focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models.
A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting.
We also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction.
arXiv Detail & Related papers (2020-05-24T00:17:15Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.