Data-Driven Extreme Response Estimation
- URL: http://arxiv.org/abs/2503.21638v1
- Date: Thu, 27 Mar 2025 16:03:46 GMT
- Title: Data-Driven Extreme Response Estimation
- Authors: Samuel J. Edwards, Michael D. Levine,
- Abstract summary: A method to rapidly estimate extreme ship response events is developed in this paper.<n>The method involves training by a Long Short-Term Memory (LSTM) neural network to correct a lower-fidelity hydrodynamic model to the level of a higher-fidelity simulation.<n>More focus is placed on larger responses by isolating the time-series near peak events and training on only the shorter time-series around the large event.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A method to rapidly estimate extreme ship response events is developed in this paper. The method involves training by a Long Short-Term Memory (LSTM) neural network to correct a lower-fidelity hydrodynamic model to the level of a higher-fidelity simulation. More focus is placed on larger responses by isolating the time-series near peak events identified in the lower-fidelity simulations and training on only the shorter time-series around the large event. The method is tested on the estimation of pitch time-series maxima in Sea State 5 (significant wave height of 4.0 meters and modal period of 15.0 seconds,) generated by a lower-fidelity hydrodynamic solver known as SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP). The results are also compared with an LSTM trained without special considerations for large events.
Related papers
- Accelerating HEC-RAS: A Recurrent Neural Operator for Rapid River Forecasting [0.0]
This paper introduces a deep learning surrogate that treats HEC-RAS not as a solver but as a data-generation engine.<n>Trained on 67 reaches of the Mississippi River Basin, the surrogate was evaluated on a year-long, unseen hold-out simulation.<n>Results show the model achieves a strong predictive accuracy, with a median absolute stage error of 0.31 feet.
arXiv Detail & Related papers (2025-07-21T13:38:54Z) - Event Signal Filtering via Probability Flux Estimation [58.31652473933809]
Events offer a novel paradigm for capturing scene dynamics via asynchronous sensing, but their inherent randomness often leads to degraded signal quality.
Event signal filtering is thus essential for enhancing fidelity by reducing this internal randomness and ensuring consistent outputs across diverse acquisition conditions.
This paper introduces a generative, online filtering framework called Event Density Flow Filter (EDFilter)
Experiments validate EDFilter's performance across tasks like event filtering, super-resolution, and direct event-based blob tracking.
arXiv Detail & Related papers (2025-04-10T07:03:08Z) - Density-Regression: Efficient and Distance-Aware Deep Regressor for
Uncertainty Estimation under Distribution Shifts [11.048463491646993]
Density-Regression is a method that leverages the density function in uncertainty estimation and achieves fast inference by a single forward pass.
We show that Density-Regression has competitive uncertainty estimation performance under distribution shifts with modern deep regressors.
arXiv Detail & Related papers (2024-03-07T23:20:34Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Operator Guidance Informed by AI-Augmented Simulations [0.0]
This paper will present a multi-fidelity, data-adaptive approach with a Long Short-Term Memory (LSTM) neural network to estimate ship response statistics in bimodal, bidirectional seas.
The study will employ a fast low-fidelity, volume-based tool SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP)
arXiv Detail & Related papers (2023-07-17T19:56:09Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - Data-driven and machine-learning based prediction of wave propagation
behavior in dam-break flood [11.416877401689735]
We show that a machine learning model that is well-trained on a minimal amount of data, can help predict the long-term dynamic behavior of a one-dimensional dam-break flood with satisfactory accuracy.
We demonstrate a good prediction ability of the RC-ESN model, which ahead predicts wave propagation behavior 286 time-steps in the dam-break flood with a root mean square error (RMSE) smaller than 0.01.
arXiv Detail & Related papers (2022-09-19T02:58:31Z) - A Data Driven Method for Multi-step Prediction of Ship Roll Motion in
High Sea States [15.840386459188169]
This paper presents a novel data-driven methodology for achieving the multi-step prediction of ship roll motion in high sea states.
A hybrid neural network, named ConvLSPTMNet, is proposed to execute long short-term memory (LSTM) and one-dimensional convolutional neural networks (CNN)
The results demonstrate that ConvNet achieves more accurate than LSTM and CNN methods in multi-step prediction of roll motion.
arXiv Detail & Related papers (2022-07-26T06:26:00Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - End-to-end LSTM based estimation of volcano event epicenter localization [55.60116686945561]
An end-to-end based LSTM scheme is proposed to address the problem of volcano event localization.
LSTM was chosen due to its capability to capture the dynamics of time varying signals.
Results show that the LSTM based architecture provided a success rate, i.e., an error smaller than 1.0Km, equal to 48.5%.
arXiv Detail & Related papers (2021-10-27T17:11:33Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Recurrent convolutional neural network for the surrogate modeling of
subsurface flow simulation [0.0]
We propose to combine SegNet with ConvLSTM layers for the surrogate modeling of numerical flow simulation.
Results show that the proposed method improves the performance of SegNet based surrogate model remarkably when the output of the simulation is time series data.
arXiv Detail & Related papers (2020-10-08T09:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.