論文の概要: A Meta-Learning Based Precoder Optimization Framework for Rate-Splitting
Multiple Access
- arxiv url: http://arxiv.org/abs/2307.08822v2
- Date: Tue, 3 Oct 2023 11:02:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 07:55:18.932395
- Title: A Meta-Learning Based Precoder Optimization Framework for Rate-Splitting
Multiple Access
- Title(参考訳): レート分割型マルチアクセスのためのメタラーニング型プリコーダ最適化フレームワーク
- Authors: Rafael Cerna Loli, Bruno Clerckx
- Abstract要約: 本稿では,トランスミッタ(CSIT)における部分チャネル状態情報を持つRSMAプリコーダを直接最適化するために,メタラーニングに基づく事前コーダ最適化フレームワークを提案する。
コンパクトニューラルネットワークのオーバーフィッティングを利用して、ASR(Average Sum-Rate)表現を最大化することにより、実行時間を最小化しながら、他のトレーニングデータの必要性を効果的に回避する。
数値的な結果から,メタラーニングに基づく解は,中規模シナリオにおける従来のプリコーダ最適化に類似したASR性能を実現し,大規模シナリオにおける準最適低複雑性プリコーダアルゴリズムよりも大幅に優れていた。
- 参考スコア(独自算出の注目度): 53.191806757701215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this letter, we propose the use of a meta-learning based precoder
optimization framework to directly optimize the Rate-Splitting Multiple Access
(RSMA) precoders with partial Channel State Information at the Transmitter
(CSIT). By exploiting the overfitting of the compact neural network to maximize
the explicit Average Sum-Rate (ASR) expression, we effectively bypass the need
for any other training data while minimizing the total running time. Numerical
results reveal that the meta-learning based solution achieves similar ASR
performance to conventional precoder optimization in medium-scale scenarios,
and significantly outperforms sub-optimal low complexity precoder algorithms in
the large-scale regime.
- Abstract(参考訳): 本稿では,トランスミッタ(csit)における部分チャネル状態情報を含むレート・スプリッティング・マルチアクセス(rsma)プリコーダを直接最適化するためのメタラーニング型プリコーダ最適化フレームワークを提案する。
コンパクトニューラルネットワークのオーバーフィッティングを利用して、ASR(Average Sum-Rate)表現を最大化することにより、実行時間を最小化しながら、他のトレーニングデータの必要性を効果的に回避する。
数値計算の結果,メタラーニングに基づくソリューションは,中規模シナリオにおける従来のプリコーダ最適化と同等のasr性能を達成し,大規模システムにおけるサブ最適低複雑性プリコーダアルゴリズムを著しく上回っていることがわかった。
関連論文リスト
- Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
インテリジェント反射面(IRS)支援無人航空機(UAV)通信は、地上基地局の負荷を低コストで軽減することが期待されている。
既存の研究は主に、複数のIRSではなく単一のIRSの配置とリソース割り当てに焦点を当てている。
我々は,共同IRSユーザアソシエーションのための新しい最適化アルゴリズム,UAVの軌道最適化,逐次干渉キャンセル(SIC)復号命令スケジューリング,電力割り当てを提案する。
論文 参考訳(メタデータ) (2023-12-08T01:57:10Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Precoding-oriented Massive MIMO CSI Feedback Design [18.61287505809249]
周波数分割二重化(FDD)システムにおけるMIMOプリコーディングアルゴリズムのダウンリンクは、ユーザからの正確なチャネル状態情報(CSI)フィードバックに依存している。
本稿では,CSIフィードバックのオーバーヘッドとユーザによるシステムにおける性能のトレードオフを,達成可能な速度で解析する。
エンド・ツー・エンドのプリコーディング指向のフィードバックアーキテクチャを設計するために、ディープラーニングベースのアプローチを採用しています。
論文 参考訳(メタデータ) (2023-02-22T18:04:02Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine
for NOMA Systems [3.6406488220483326]
NOMA手法の有効性を十分に活用する上で重要な課題は、リソース割り当ての最適化である。
NOMAシステムにおけるチャネル割り当てのためのコヒーレントIsing Machine(CIM)に基づく最適化手法を提案する。
提案手法は, 高速化と最適解の両面において優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T09:22:54Z) - End-to-end Neural Video Coding Using a Compound Spatiotemporal
Representation [33.54844063875569]
本稿では,2つの手法により生成された予測を適応的に組み合わせたハイブリッド動作補償法を提案する。
具体的には、リカレント情報集約(RIA)モジュールを用いて、複合時間表現(STR)を生成する。
さらに、ベクトルベースの再サンプリング、適応カーネルベースの再サンプリング、補償モード選択マップ、テクスチャ拡張を含む、CSTRから複数の予測を生成する1対多デコーダパイプラインを設計する。
論文 参考訳(メタデータ) (2021-08-05T19:43:32Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
オーバー・ザ・エア・コンピューティング・アルゴリズム(FL)は,複数のアクセスチャネルの波形重畳特性を利用して高速なモデルアグリゲーションを実現することができる。
本稿では,AirCompベースのFLのための高速かつ信頼性の高いモデルアグリゲーションを実現するための2段階最適化フレームワークを提案する。
シミュレーションの結果,提案するフレームワークとIRSの展開により,ベースラインアルゴリズムよりもトレーニング損失が低く,FL予測精度も高いことがわかった。
論文 参考訳(メタデータ) (2020-11-10T11:29:57Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。