論文の概要: Precoder Learning for Weighted Sum Rate Maximization
- arxiv url: http://arxiv.org/abs/2503.04497v1
- Date: Thu, 06 Mar 2025 14:45:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:20:30.018681
- Title: Precoder Learning for Weighted Sum Rate Maximization
- Title(参考訳): 重み付きサムレート最大化のためのプレコーダ学習
- Authors: Mingyu Deng, Shengqian Han,
- Abstract要約: 重み付き和プリコーディング(WSRM)のためのプリコーダを学習するための新しいディープニューラルネットワーク(DNN)を提案する。
既存のユニタリと比較して、提案したDNNは、最適プリコーディングポリシーに固有の結合と置換のバランスを利用する。
シミュレーションの結果,提案手法は学習性能と一般化性能の両方の観点から学習方法よりも有意に優れていた。
- 参考スコア(独自算出の注目度): 5.305346885414619
- License:
- Abstract: Weighted sum rate maximization (WSRM) for precoder optimization effectively balances performance and fairness among users. Recent studies have demonstrated the potential of deep learning in precoder optimization for sum rate maximization. However, the WSRM problem necessitates a redesign of neural network architectures to incorporate user weights into the input. In this paper, we propose a novel deep neural network (DNN) to learn the precoder for WSRM. Compared to existing DNNs, the proposed DNN leverage the joint unitary and permutation equivariant property inherent in the optimal precoding policy, effectively enhancing learning performance while reducing training complexity. Simulation results demonstrate that the proposed method significantly outperforms baseline learning methods in terms of both learning and generalization performance while maintaining low training and inference complexity.
- Abstract(参考訳): プリコーダ最適化のための重み付き和率最大化(WSRM)は、ユーザのパフォーマンスと公平性を効果的にバランスさせる。
近年の研究では、総和レート最大化のためのプリコーダ最適化におけるディープラーニングの可能性を示している。
しかし、WSRMの問題は、ユーザー重みを入力に組み込むために、ニューラルネットワークアーキテクチャを再設計する必要がある。
本稿では,WSRMのプリコーダを学習するための新しいディープニューラルネットワーク(DNN)を提案する。
既存のDNNと比較して、DNNは、最適プリコーディングポリシーに固有の結合ユニタリと置換の同変特性を活用し、学習性能を効果的に向上し、トレーニングの複雑さを低減した。
シミュレーションの結果,提案手法は低トレーニングと推論の複雑さを維持しつつ,学習性能と一般化性能の両方の観点からベースライン学習法を著しく上回っていることがわかった。
関連論文リスト
- A Low-Complexity Plug-and-Play Deep Learning Model for Massive MIMO Precoding Across Sites [5.896656636095934]
MMIMO技術は、スペクトル効率とネットワーク容量を向上させることで、無線通信を変革した。
本稿では,既存のアプローチの複雑性問題に対処するための,新しいディープラーニングベースのmMIMOプリコーダを提案する。
論文 参考訳(メタデータ) (2025-02-12T20:02:36Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - A Meta-Learning Based Precoder Optimization Framework for Rate-Splitting
Multiple Access [53.191806757701215]
本稿では,トランスミッタ(CSIT)における部分チャネル状態情報を持つRSMAプリコーダを直接最適化するために,メタラーニングに基づく事前コーダ最適化フレームワークを提案する。
コンパクトニューラルネットワークのオーバーフィッティングを利用して、ASR(Average Sum-Rate)表現を最大化することにより、実行時間を最小化しながら、他のトレーニングデータの必要性を効果的に回避する。
数値的な結果から,メタラーニングに基づく解は,中規模シナリオにおける従来のプリコーダ最適化に類似したASR性能を実現し,大規模シナリオにおける準最適低複雑性プリコーダアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-07-17T20:31:41Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
畳み込みニューラルネットワーク(CNN)は、ディープラーニングアルゴリズムの代表クラスである。
テキストCNNニューラルネットワークに基づくテキスト分類タスクのためのSA-CNNニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T14:27:34Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。